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Review of Regression Estimators

By W. Edwards Deming and Morns H. Hansen

Reason to Use Regression Estimators

There are a number of ways to use supplementary information con-
cerning the frame, for caleulation of an estimate of some characteristic
of the frame. For example, the estimate X = N7 uf the total population
of a frame of N sampling units makes use of knowledge of N. The
ratio-estimate X' = Bf also makes use of supplementary information
concerning the frame, B is here the total Y-population in the frame,
already known, and f is the ratio Iy or T:3 derived from the
sample. Stratified sampling is another way to make use of supplement-
ary information concerning the {rame.

Still other ways are suggested by a study of regression estimators.
We shall introduce here a general form of estimofor that includes
X = Nz and X' = Bf as spocial cases, but which leads also to other
forms of estimators, sometimes highly useful. It Is important to note at
the outset that any of the estimators that take advantage of supple-
mentary information may have consideralile advantage over the simple
estimate & if the correlation p between r. snd yi i% high, but that this
eondition is not.alwavs sufficient,

We assume simple random sampling with replacement, and write
the regression estimator in the form

{1} T=F+mib-—m

wherein b = Ey is the y-population per sampling unit, lnown indepen-
dently from some source such as the Census. Later, we shall note the
circurnstance in which b is estimated from a larger sample, or from an
independent sample, with a variance to reckan with. We consider here
4 cases (i = 1, 2, 3, 4), from amongst a number of possible alternatives,
taken largely from Hansen, Hurwitz, and Madow {Wiley, 1953),

Preliminary Hemarks

The estimate ¥ =% is unbiased. We include the estimator T on our
list here for comparison, because it yields the variance s;* which appears
in the other varianeces to follow.

la*
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The estimator u is also unbiased for any choice of the constant ma.
Estimators Ty and Ty are subject fo mathematies] biases that are usually
too trivial to cause concern, but which may under ¢ertain ¢ircumstances
be troublesdme when the number n of sampling units is only 1, 2, 3, or
some other small number. For a discussion of these biases see Cothran
Sampling Techniques (Wiley, 1830, 2d ed., 1963) Chapter 7.

Table 1
Spme possible regression estimators

C.ise ™, Eguation Remarks
1 1] Ty =& This choice of m; makes no use of
[ supplementary information.
2 M Iy =T+ Here e Is any constant noet der-
Ty (7 — T} ived from the sample under con-
sideration. This estimator is some-
times called the difference esti-
B mator,
a
q g = 2H Ty=%+ This i the so-called least-squares
oy g (b — 3 regression. estimator.
ol
= i)'l y
4y |
4 my, = EY =1b Thig is the ratio-estimator.
=f

Variances (assuming N large relative to n)

(2)

(3

Estimator 1

Estimator 2

- . . —— a
Var I = -‘Izz: likewise Var {jy =«

Var Ty =05 (1 — 0%} + o5t my — Y

7

o

ot — ¢+ o)

wherein § =pozio; and e = [y — A8

(Mote that

oe=(ogloz){my — 73)

even if o =0}
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(4) Estimator 3 Var H=o(l— ¢} + R
(5) Estimator 4 Var &; =o5" (1 + G5'/C5" — 20C5/C5) + B!
(8 =20 (1 — o) [nlarge;and C; = c;l

R and R’ are remainders in the Taylor's series, involving 1/n* and
higher powers, and will be negligible if n is large.

It follows that

Var I == C'gz.‘ﬂ_'.':,-j —20C:/Cc + R

T =2 =
Var T 1 —® + (o0 057 tmy — B
& E ; S
)] el large; my; =B and C, = C,j
rar & O3 (1 — 0%+ ot fmy — B
War Ta T 4 r i
iyl est_FI . ;
Vor T oz (L— ¢+ R
{10) =1 [nlarge, m, — g small|
i1 var z, 1 C;H0s — 20 C5/C; + R
{11) Var E* 1= gl + B
. 2 Co
(12} =T57 In large, and Cz = C5l.

Choice of Estimator

Comparison of variances is important, of course, but the burden of
computation of estimates is also a factor in the choice of estimator. Esti-
mator Fi involves much more arithmetie than the others. This may not
be important to an electronie computer, or if the size of sample is small
and if there are only a few estimators to prepare. Estimators T» and Iy,
on the other hand, are extremely simple to apply, requiring but little
more effort than ; = &

The variances of Te and of T3 will be about equal if an acceplable value
for me iz known from prior studies. It will usually suffice if mas does not
differ from 8 by more than 30 % or 40 % (i. e, if e <Z.3 or 4). In a con-
tinuing series of surveys, we may often adopt ma as the lesst sguares
estimator of the regression coefficient from prior studies, or as some
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simple approximation thereto, The choice of estimator will then depend
on a variety of local competitive arguments that will involve the subject-
matter and facilities for computation, not usefully discussed in a general
treatment.

If the correlation ¢ between x, and y; be moderate or high positive, and
if the line of regression of = on ¥ misses the origin by a wide margin,
then the estimator T will show substantial advantages over I and 7y, If
the correlation be moderate or high negative, then whether or not the
regression of  on ¥ goes through the origin, the estimator 3 will show
substantial advantages over =, and Ty, If the y-variate shows relatively
wide spread (i. e, if C3 is much greater than Cz), the ratio-estimator &y
may actually be far less precise than the simple estimator & = I, even
if o be high positive, especially if the line of regression misses the origin
by a wide margin. On the other hand, if o = 0 and if the line of regres-
sion passes through the origin (0 C3z =C5) or nearly so, T and &; will
have about the same variance, but Ty may be much the easier one to
compute.

Estimator & is practicable if we have at hand from prior knowledge
{2z from prior surveys of a related t¥ype) a rough approximation to the
regression cocfficient § = 00z/05 otherwise the estimator s may lead to
high variance.

Estimate of b Subject to Sampling Error

It often happens that the y-population per sampling unit is not known
with the reliability of a census, but comes instead from a sample. This
circumnstance introduces additional terms into the variances. Let n be
the size of the present sample, n” the size of the other sample, which gives
an estimate of b with variance noz2/n.

We distinguish between two cases: I. the present sample of size n isa
zubsample of 3 sample of size n'; II, the two samples are independent.
Approximate variances are in the table on the next page.

Table 3 shows numerical comparisons for Estimators 1, 3 and 4, under
the assumption that Cz=Cy. It will be ohserved that when Cz=C5
and when o is high and positive, the variances of Estimators 3 and 4 are
almost equal, and that both of them yield considerable gain in precision
over Estimator 1. The gain is especially striking when n' is large com-
pared with n. The gap between Estimators 1 and 4 closes at 0 = .5, and
Estimator 4 actually loses precision for g << .5. On the other hand, Esti-
mator 3 continues to show gains over Estimator 1, even when g is very
low, at the expense of extra calculation. (Estimator 2 is not usefully
compared in a general table, because of the wide latitude of choices Open
for mg, which will depend heavily on local information.)
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Table 2
Rel-variances of estimators
oy Case [ sample of size n drawn| Cage IT: samples of size n and
Estimator ag a subzample of n [ n' are independent
T C;* [Nosupplementaryinfor- | Same as in Case I
mation used]
T, G [1 ot —efil—wm] | CF (1 —otl — &)+
+ 82 (1 4+ eifnm]
E € [1—ofQl — niw] Same as in Case I
i € — (20 C:C; — CA( — nin) | G5 — (20 G505 - c;; {1 —nin')
+i2 Gpnm}iE; — 2T
Table 3
Ratio of Yar T, and Var &, to Var T,
Case T: the sample of size n is a subsample of 0’
Assume C=C5
o Estimator n'n =5 #'fn = 10 n'm =
|
50 1 278 [ 188 0875
4 280 190 | B
P — - ; e B S —— - —
3 3 A52 | 1 180
360 ' 280 200
& 3 : A28 A4 . 360
324 460 | 400
k| 3 S0 558 ol
| RO 540 | ]
br— = 5 N S . —
5 ' 3 | BO0 l Firdi | 750
1.0 1.000 | 1.000
| | | |
B 3 228 38 910
1,320 ' 1.360 1.400
1 892 491 990

1.640 1720 1.800
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Example

In a study of the cost of hauling goods by motor truck, cne aim was
io estimate the average number of actual miles per shipment. It was a
fairly simple matter to look up in & table, for any shipment the so-called
revenue-miles betwesn origin and destination. The actusl miles that a
shipment moved over, howesver, was difficult, and required specialized
study, as the actual origin and destination might be from 1 to 50 miles
away from the point from which revenue is computed, Moreover, de-
tours, regular and irregular, figure in the actual miles,

Filot studies showed that the correlation o between revenue-miles and
actual miles on a shipment was almost never helow 8, and often rmuch
higher.

Let f = E/§ be the ratio of actual miles to revenue-miles in a small
subsample of size n, and let b be the estimate of the average revenue-
miles per shipment in the main sample of size n')

If actual miles be placed only on a random subsample of size n = n'/10,
and if & = fh = (E5) b be calculated, then it turns out that

Var &y = 484 Var §

It follows that the standard error of & would be only (10 X .424} or
2.1 times the standard error that would come from placing actual miles
on every shipment of the sample of size n', and using #.

Var Ty would be only about 10% lower than Var £y, and in this
example waould not be worth the additional lahor of coampulation.

In this instance, the larger sample of size #* was in use for other pur-
poses. Consequently, the only problem was to estahlish a subsampling
fraction n'n’ that would give sufficient precision for the purpose. If the
entire procedure were being designed {or the purpose of estimating ave-
rage actual miles, and the independent information were not obtainable
from other sources, one would take into account comparative unit costs
of filling in the information on x and v, and adjust both = and " to opti-
mum sizes. Costs would enter the formulas in somewhal the same way
as iney do in stratified sampling.

Zusammenfassung
Ubersicht Ober Regresslons-Behitzfunktionen

Die Verwendung von Regressions-Schitsfunktionen, bei denen man sich
erginzender Informationen bedient, kann erhebliche Vorteile pegeniiber ain-
fachen Schitzverfahren haben. Die Bedingungen hierzu werden von den Ver-
fagsern systematisch untersucht und fiir folgende 4 Methoden verglichen:
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1. Einfache Schitzfunktiones chne Verwendung wvoen Nebeninformatsonen
7, THfferenzen-Schitrfunktionen mit cinenr Konstanten Koeeffzienten

3. Repressions-Schitefunktionen, die auf der Methode der kleinsten Qua-
drate baszicren

4. Verkillnis-Schitzfunktionen

Sie kommen zu dem Ergebnis, dofl die Weothoden 2 und 4 din Einfachheit
der Berschnung fiir sich haben und auch meistens glinstiger sind als die
Methode 1, dall aber in allen Fllen mittlerer oder hoher positiver Korre-
lation und ins Gewicht fallender Regressionskonstante gowle fast immer bed
nepgativer Korrelation die Regrezsions-Schitzung nach 3 vorzuzichen ist

DHe Schitzungen werden oft dadurch erachwert, dali der Erwarlungswert
der zur Nebeninformation herangerogenen Daten (b) selbst einer Stichpro-
benvariabilitit unterworfen ist. Dann sind die beiden Fille zu unterscheiden,
dall die beiden Stichproben vonsinander abhiingig (die eine Stichprobe stellt
eine Teilmenge der anderen dar) oder unabhingig sind. Fic die Methode
1 und 3 macht dieshezdgiich der Stichprobenfchler keinen Unterschied, wohl
aber fiir 2 und 4. Im Fall abhingiger Stichpraben erweist sich die Ubsrlegen-
heit von 3 (ber 1 bet mittleren und achwichen Korrelastionsverhilinissern,
wihrend 4 dann vergleichsweise schlechilere Ergebnisse zeitigt.



