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SAMPLE SURVEYS 

There is hardly any  part o f  statistics that does 
not interact in some way  w i th  the theory or the 
practice o f  sample surveys. The differences between 
the study o f  sample surveys and the study of other 
statistical topics are primarily matters of emphasis. 

The* jield o f  survey research is closely related to 
the statistical study o f  sample surveys [see SURVEY 
ANALYSIS]. Survey research is more concerned with 
highly multivariate data a n d  complex measures of 
relationship; the study of sample surveys has em- 
phasized sampling distributions and eficient design 
o f  surveys. 

W. Edwards Denzing ' 
Alan Stuart 

I 
THE FIELD 

The theory of sample surveys is  mathematical 
and constitutes a part of theoretical statistics. The 
practice of sample surveys, however, involves an 
intimate mixture of subject matter (such as demog- 
graphy, psychology, consumer research, medicine. 
engineering) with theory. The germ of a study lies 
in  the subject matter. Translation of a substantive 
question into a stimulus (question or test) enable< 
man to inquire of nature and to quantify the result 
in terms of estimates of what the same inquiry 
would produce were it to cover every unit of tllc 
population. 

Sampling, properly applied, does more. I t  fur- 
nishes, along with an estimate, an index of the 
precision thereof-that is, a margin of thc un- 
certainty, for a stated probability, that one nn\- 
reasonably ascribe to accidental variations of 
kinds, such as variability between units (that 1. 
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between households, blocks, patients), variability 
of the interviewer or test from day to day or hour 
to hour, variations in coding, and small, independ- 
ent, accidental errors in transcription and card 
punching. 

The techniques of sampling also enable one to 
test the performance of the questionnaire and of 
the investigators and to test for differences between 
alternative forms of the questionnaire. They enable 
one to measure the extent of under-coverage or 
over-coverage of the prescribed units selected and 

.also to measure the possible effects of differences 
between investigators and of departures from pre- 
scribed rules of interviewing and coding. 

This article describes probability sampling, with 
special reference to studies of human populationsL 

a l ~ o ~ h ~ h ~ s a m e t h e o r y  andmethods apply to 
studies of physical materials, to accounting, and 
to a variety of other fields. The main characteristic 
of probability sampling is its use of the theory of 
probability to maximize the yield of information 
for an allowable expenditure of skills and funds. 
Moreover, as noted above, the same theory enables 
one to estimate, from the results themselves, mar- 
gins of uncertainty that may reasonably be attrib- 
uted to small, accidental, independent sources of 
variation. The theory and practice of probability 
sampling are closely allied to the design of experi- 
ments. 

The principal alternatives to probability sam- 
pling are judgment sampling and convenience 
sampling [see SAMPLE SURVEYS, article on NON- 

PROBABILITY SAMPLING]. 

Uses of sampling. Probability sampling is used 
in a wide variety of studies of many different kinds 
of populations. Governments collect and publish 
monthly or quarterly current information in such 
areas as employment, unemployment, expenditures 
and prices paid by families for food and other 

n e c e s  mc+concli~orani y m h o f i r O p s 7  - 

In modern censuses only basic questions are 
asked of every person, and most census informa- 
tion is elicited for only a sample of the people, such 
as every fourth household or every twentieth. More- 
over, a large part of the tabulation program is car- 
ried out only on a sample of the information elic- 
ited from everyone. 

Sampling is the chief tool in consumer research. 
Samples of records, often supplemented by other 
information, furnish a basis on which to predict 
the impact that changes in economic conditions 
and changes in competitive products will have on 
a business. 

Sampling is an important tool in supervision and 

is helpful in many other administrative areas, such 
as studies of use of books in a library to improve 
service and to make the best use of facilities. 

Sampling-what is it? Everyone acquires in- 
formation almost daily from incomplete evidence. 
One decides on the basis of the top layer of apples 
in a container at the fruit vendor's whether to buy 
the whole container. The top layer is a good sample 
of the whole if the apples are pretty well mixed; 
it is a bad sample and may lead to a regrettable 
purchase if the grocer has put the best ones on top. 

The statistician engaged in probability sampling 
takes no chances on inferences drawn exclusively 
from the top layer or from any other single layer. 
He uses random numbers to achieve a standard 
degreedmixin& the&)Ldispefsing tke +awl* - 
throughout the container and-giving to every sam- 
pling unit in the frame an ascertainable probability 
of selection [see RANDOM NUMBERS]. He may use 
powerful techniques of stratification, ratio estima- 
tion, etc., to increase accuracy and to decrease 
costs. For instance, in one type of stratified sam- 
pling he in effect divides the container of apples 
into layers, mixes the apples in each layer, and 
then takes a sample from each layer. 

Some history of sampling. Sir Frederick Morton 
Eden estimated the number of inhabitants of Great 
Britain in 1800 at nine million, using data on the 
average number of people per house in selected 
districts and on the total number of houses on the 
tax-rolls, with an allowance for houses not reported 
for taxation. The first census of Great Britain, in 
1801, confirmed his estimate. Messance in 1765 
and Moheau in 1778 obtained estimates of the 
population of France by multiplying the ratio of 
the number of inhabitants in a sample of districts 
to the number of births and deaths therein by the 
number of births and deaths reported for the whole 
country. Laplace introduced refinements in 1186- - 

a ~ d ~ l ~ l a ~ d ~ h a t 5 ~ , % 0 < a ~ t h e  outside margin 
of error in his estimate of the population of France, 
with odds of 1,161 : 1. His estimate and its pre- 
cision were more successful than those of the com- 
plete census of France that was attempted at the 
same time. [See LAPLACE.] 

A. N. Kiaer used systematic selection in a survey 
of Norwegian workers in 1895, as well as in spe- 
cial tabulations from the census of Norway in 1900 
and from the census of Denmark in 1901 and in 
a study of housing in Oslo in 1913. 

Bowley in 1913 used a systematic selection of 
every twentieth household of working-class people 
in Reading (England ) and computed standard 
errors of the results. 
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Tabulation of the census of Japan in 1921, 
brought to a halt by the earthquake of 1923, went 
forward with a sample consisting of the records 
of every thousandth household. The results agreed 
with the full tabulation, which was carried out 
much later. The Swedish extraordinary census of 
1935 provides a good example of the use of sam- 
pling in connection with total registrations. 

One strong influence on American practice came 
in the 1930s from Margaret H. Hogg, who had 
worked under Bowley. Another came when con- 
troversies over the amount of unemployment dur- 
ing the depressions of 1921 and 1929 called for 
improved methods of study-Hansen's sample of 
postal routes for estimates of the amount of un- 
employment in 1936 gained recognition for im- 
proved methods; without it the attempt at complete 
registration of unemployed in the United States at 
the same time would have been useless. 

Mahalanobis commenced in 1932 to measure the 
yield of jute in Bengal and soon extended his sur- 
veys -to yields of rice and of other crops. In 1952 
all of India came under the national surveys, the 
scope of which included social studies and studies 
of family budgets, sickness, births, and deaths. 
Meanwhile, the efforts of statisticians, mainly in 
India and England, had brought advances in 
methodology for estimation of yield per acre by 
random selection of small plots to be cut and 
harvested. 

A quarterly survey of unemployment in the 
United States, conducted through interviews in a 
sample of households within a sample of counties, 
was begun in 1937. It was soon made monthly, 
and in 1942 it was remodeled much along its pres- 
ent lines (Hansen et al. 1953, vol. 1, chapter 9). 

Sampling was used in thecensus of the United 
States in 1940 to extend coverage and to broaden 
the program of tabulation and publication. Tabu- 
lation of the census of India in 1941 was carried 
out by a 2 per cent sample. Subsequent censuses 
in various parts of the world have placed even 
greater dependence on sampling, not only for speed 
and economy in collection and tabulation but also 
for improved reliability. The census of France used 
sampling as a control to determine whether the 
complete. Census of Commerce of 1946 was suffi- 
ciently reliable to warrant publication; the decision 
was negative (Chevry 1949). [For further history, 
see Stephan 1948. Some special references to his- 
tory are contained in Deming (1943) 1964, p. 142. 
See also STATISTICS, article On THE HISTORY OF 

STATISTICAL METHOD.] 
Misconceptions about sampling. Sampling, of 

course, possesses some disadvantages: it does not 

furnish detailed information concerning every 
individual person, account, or firm; furthermore, 
error of sampling in very small areas and sub- 
classes may be large. Many doubts about the value 
of sampling, however, are based on misconcep- 
tions. Some of the more common misconceptions 
will now be listed and their fallacies pointed out. 

It is ridiculous to think that one can determine 
anything about a population of 180 million people, 
or even 1 million people, from a sample of a few 
thousand: The number of people in the country 
bears almost no relation to the size of the sample 
required to reach a prescribed precision. As an 
analogy (suggested by Tukey), consider a basket 
of black and white beans. If the beans are really 
mixed, a cupful would determine pretty accurately 
the proportion of beans that are black. The cupful 
would still suffice and would give the same'pre- 
cision for a whole carload of beans, provided the 
beans in the carload were thoroughly mixed. The 
problem lies in mixing the beans. As has already 
been noted, the statistician accomplishes mixing 
by the use of random numbers. 

Errors of sampling are a hazard because they 
are btgovernable and unknown. Retiability of a 
sample is a matter of luck. Quality and reliability 
of data are built in through proper design and su- 
pervision, with aid from the theory of probability. 
Uncertainty resulting from small, independent, ac- 
cidental errors of a canceling nature and varia- 
tion resulting from the use of sampling are in any 
case determinable afterward from the results 
themselves. 

Errors of sampling are the only danger that one 
has to worry about in data. Uncertainty in statisti- 
cal studies may arise from many sources. Sampling 
is but one source of error. [See below, and see also 
ERRORS, article on NONSAMPLING ERRORS]. 

Electronic data-processing machines, able to 
store and retrieve information on millions of items 
with great speed, eliminate any need of  sampling. 
This is a fanciful hope. The inherent accuracy of 
original records as edited and coded is the limita- 
tion to the accuracy that a machine can turn out. 
Often, complete records are flagrantly in error or 
fail to contain the information that is needed. 
Moreover, machine-time is expensive; sampling re- 
duces cost by reducing machine-time. 

A "complete" study is more reliable than a sam- 
ple. Data are the end product of preparation and 
of a long series of procedures-interviewing, cod- 
ing, editing, punching, tabulation. Thus, error of 
sampling is but one source of uncertainty. Poor 
workmanship and structural limitations in the 
method of test or in the questionnaire affect a 
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complete count as much as they do a sample. I t  is 
often preferable to use funds for improving the 
questionnaire and tests rather than for increasing 
the size of the sample. . ' 

Statistical parts of sampling procedure. A sarn- 
pling procedure consists of ten parts. In the follow- 
ing list, M will denote those parts that are the re- 
sponsibility of the expert on the subject matter, 
and S will denote those that are the responsibility 
of the statistician. (The technical terms used will 
be defined below.) 

( a )  Formulation of the problem in statistical 
terms (probability model) so that data will be 
meaningful (.M, S). A problem is generated by the 
subject matter, not by statistical theory. 

(b )  Decision on the universe (M ). The universe 
follows at once from a careful statement- of the 
problem. 

(c)-Decision on the frame (M. S). Dccision on 
the typc and size of sampling units that constitute 
the frame (S).  

( d )  Procedure for the sclcction of' the samplr tS). 
( c )  Procedure for the calcul;~tion of' cstimatc.~ 

of  thc chnractcristics desired (nvcragcs, totals. 
prolx~rtions. ctc.) (S) .  

( f )  Proccdurc for thc calculation of' star~tlnrtl 
crrors (S ). 

(.(I Dcsign of statistical controls. to l)cr~~ii t  dc*- 
tcction ol' thc cxistcncc and cstcl~t  01' vi~rious 11011- 

s;lmpling crrors { S ). 
( I t )  Iditing. coding. 't;tl)uli~tion ( .\I. S ) .  

t i )  Evaluation of tlic statistical rc.lial)ility 01' tht, 
rcsults ( S ). 
0) Clscs of' the data ( A 1  1. 

Ilefinit ions of terms 

.,a Tlic tcchnical tcrms that ha~c'I)c~cli usrd aljovc 
and that will be needed for l'urther discussion will 
no\v bc defined. 

Universe of study. The universe consists of all 
the people, firms, material, conditions. units. ctc.. 
that one wishes to study. whether accessible or not. 
The universe for any study becomes clear from a 
careful statement of the problem and of the uses 
intended for the data. Tabulation plans disclose 
the content of the universe and of the information 
desired. Examples of universes are (i) the house- 
wives aged 20-29 that will live in the Metropolitan 
Area of Detroit next year, (ii) all the school chil- 
dren in a defined area, (iii) all the pigs in a coun- 
try, both in rural areas and in towns. 

Frame. The frame is a means of access to the 
universe (Stephan 1936) or to enough of the uni- 
verse to make a study worthwhile. A frame is 
composed of sampling units. A sampling unit 

commonly used in home-to-house interviewing is 
a compact group or segment of perhaps five con- 
secutive housing units. A frame is often a map, 
divided up-either explicitly or tacitly-into labeled 
areas. In a study concerned with professional men, 
for example, the frame might be the roster of 
membership of a professional society, with pages 
and lines numbered. The sampling unit might be 
one line on the roster or five consecutive lines. 

Without d frame probability sampling encoun- 
ters numerous operational difficulties and inflated 
variances (see, for example, the section "Sampling 
moving populations," below). 

In the types of problems to be considercd here 
(with the exccption of those treated in the scction 
"Sampling moving populations." bclow) thcrc will 
be a frame. and cvery person. or cvcry housing 
unit, will belong to onc sampling unit:.or will 11;lvc 
an asccrtainablc prol);lbilitv tzf' hclonging to i t .  111 

the sampling of slntionary popul;~tions. a sampling 
procctlurc prcbscri1)t.s ~ L I I C S  I)!. \vl~ich i t  is possil)lc~ 
to give n scriai 11urnl)c~ to ;Illy s;t~iipling ut~it.  such . 
;IS a sm;ill ;Ireit. A r ;~t~tloii  nu1nl)c~r \\ . i l l  t l1(>11 scl(3c.t 
a tlcfi~iite. s a l ~ i l ) l i ~ ~ ~ :  unit I'rori~ tl,c, I't.;tmc i111tl \\.ill 
lcacl to i11vc-stigi~tioli 01' ;ill or ;I sl~l)s;t~i~])lc~'ol '  t l l c *  

matcri;ll thcbrc~ir~ 111;it I)c,lo~igh t o  tlic uni\.crscs. 
S(-l(rctiot~ of ~ * ~ . \ ( I I I s  z(.it11i11 (1 ( l ~ ( ~ ~ I l i t ~ q  1111it. 

Sonie sur\.cvys ~ x . c l i r i t . c -  il~lol,ni:~tior~ col~cc~r~titl: i l l -  

divi(lu;ils. ; I I I ( I  i l l  S L I C I I  citstas i t  I I ~ ; I ~  I)(> (lvsir;iI)l(~. 
for v;irio~~s rc;~sot~s I ~ ~ O I I ~ ; I : I O I I .  l';itig~c,. ; I I I ( I  st) 

011 ). to i ~ ~ t ( n r \ , i ( ~ \ v  o t ~ l y  oli(* (~l i : i l ) l (~  pe-1.so11 i l l  ; I  

d\\-clling u ~ ~ i t  t l i ; ~ t  lirs in ;I sc~le~ctcd sc:lncstlt. In 
s ~ ~ c l i  s~tr\,t.ys. t11ca il~t(srvi(-\~(-r I I I ~ I ~  111;ikt- ; I  l i \ t  01' 
t11c c~ligil~lc- pc~ol)l(~ 111 (%;ICII (It\  i 4 I i t i ~  t 1 1 1 i I  tl1:11 1';iIls 
in tlic s;t~nl)lc ; I I I ~  111;iy \('I('c.I tli(~rv11.oti1. 011 t11(-  
S])Ot. I)! il s C l l c ~ l l l ( ~  l):l\e~cl 0 1 1  1~;ltl~lotll llu1ltl~~~l~\. o I l ( b  

pcrsoli to intcsr\icz\v. A~)])rol)~'i;~tc \ v c - i ~ l ~ t s  ;ire 

;lppliccl i l l  t;~l)ul;~tioti ( 1)~,1ilit1!: 1960. p. 2.10 1 .  

0 1 / i 1 1 1  1 1 1 1  i l l 1  1 1 / 1 1  f f l l l  011c I l l U S t  

oftcn work ~ v i t l i  a 1'r;lnlc th:it I':iils to includr ccr- 
tain arcns or classcs that 1)clong to the univcrsc. 
A list of' areas that contain norn~al f'amilics mil!. 
not lcad to a11 the consumcrs of' a product. as 
somc consumcrs may live in quasi-normal yuar- 
ters, such as trailers and dormitories. Extension 
of the sampling procedure into thcse quarters may 
present problems. Fortunately, the proportion of 
people in quasi-normal households is usually small 
(mostly 1 per cent to 3 per cent in American' 
cities), and one may therefore elect to omit them. 

A frame may be seriously impaired if it omits 
too much of certain important classes that by defi- 
nition belong to the nominal frame. It is substan- 
tive judgment, aided by calculation, that must de- 
cide whether a proposed frame is satisfactory. 
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Sampling from an incomplete frame. Almost 
every frame is in some respects out of date at the 
time of use. It is often possible, however, to use 
an obsolete or incomplete frame in a way that will 
erase the defects in the areas that fall into the 
sample. One may, for example, construct rules by 
which to select large sampling units from an in- 
complete frame and then to amend those units, by 
local inquiry, in order to bring them up to date. 
Selection of small areas within the larger area, with 
the appropriate probability, will maintain the pre- 
scribed over-all probability of selection. 

Sampling for Tare characteristics. One some- 
times wishes to study a rare class of people when 
there is no reliable list of that class. One way to 
accomplish this is to carry out a cheap, rapid test 
in order to separate a sample of households into 
two groups (strata)-one group almost free of the 
rare characteristic, the other-heavily populated 
with it-and then to investigate a sampledrawn 
from each group. Optimum sampling fractions and 
weights for consolidation may be calculated by the 
theory of stratified sampling (discussed below; see 
also Kishin Symposium . . ., 1965). 

Equal complete coverage of a frame. The equal 
complete coverage of a frame is by definition the 
result that would be obtained from an investigation 
of all sampling units in a given frame, carried 
out by the same field workers or inspectors, using 
the same definitions and procedures, and exercis- 
ing the same car$ as <hey exercised-n the sample, 
and at about the same peried of time. The adjective 
"equal" signifies that the same methods must be 
used for the equal complete coverage as for the 
sample. 

Some operational definitions. Sampling error. 
Suppose that for a given frame, sampling units 
bear the serial numbers 1, 2, 3, and on to N. How- 
ever it be carried out, and whatever be the rules 
for coding and for adjustment for nonresponse, a 
complete coverage of the N sampling units of the 
frame would yield the numerical values 

.a, ,  a,, a,,, a, for x, 
b , ,  b,, b,;.., b.,for y. 

In a survey of unemployment, for example, the 
x-characteristic of a person might be the property 
of being unemployed and his y-characteristic the 
property of belonging to the labor force. Then a , ,  . 

the x-population of sampling unit No. 1 (which 
might consist of five successive households), would 
be the count of people that have the x-characteristic 
in that sampling unit. That is, a ,  would be the 
count of unemployed persons in the five house- 
holds. Similarly, b , ,  the y-population, would be the 
count of people in the labor force in those same 

households. Then a,/b, would be the proportion 
unemployed in the sampling unit of five house- 
holds. 

Again, x might refer to expenditure for bread 
and y to expenditure for all food. Then al/bl would 
be the proportion of money that goes for bread in 
sampling unit No. 1, expenditure for all food being 
the base. 

Here, the people with the x-characteristic form 
a subclass of those with the y-characteristic, but 
this may not be so in other surveys. Thus, the 
.x-characteristic and the y-characteristic might form 
a dichotomy, such as passed and rejected or male 
and female. One often deals with multiple charac- 
teristics, but two will suffice here. 

Denote the sum of the x-values and of the 
y-values in the N sampling units by 

A = al + a, + a, + - - - + aN = Na = x-total, 
B = b, + b, + b, + - -. + bN = Nb = y-total, 

which makes a and b the average r-value and the 
average y-value per sampling unit in the frame, 
as in Table 1. For example, A might be the total 
number unemployed in the whole frame and B the 
total number of people in the labm force. Then 
4 = A/B would be the proportion of people in the 
labor force that are unemployed. 

An operational definition of the sampling process 
and of the consequent error of sampling is con- 
tained in the following experiment. 

( a )  Take for the frame N cards, numbered se- 
rially 1 to N. Card i shows a ,  and b, for the values 
of the x-characteristic and y-characteristic. 

(b )  Draw a sample of n cards; following the 
specified sampling procedure (which will invari- 
ably require selection by random numbers). 

Table 1 illustrates the notation for the frame 
and for the results of a sample. The serial num- 
bers on the cards in the sample are not their serial 
numbers in the frame but denote instead the ordi- 
nal number as drawn by random numbers. Sample 
card No. 1 could be any card from 1 to N in the 
frame. In general, another sample would be com- 
posed of different cards, as the drawings are 
random. 

(c)  Form estimates by the formulas specified 
in the sampling plan. For illustration, one may 
form, from the sample, estimators like 
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Tabk I - Some notatian for frame and sample 

F R A M E  SAMPLE 
Serial 

number 
of 

sampling 
unit 

1 
2 

Serial 
number 
in order 
drawn in 
sampk 

1 
2 

x-value 

a, 
a2 

x-value 

Total 

Average per  

sampling unit 

Standard 
deviation 

Sonie outhors define variances by .means of N-1 and n-1 rather than N and n. 

If ( I ) ,  ( 2 ) ,  (3), (4), and (5) are used as esti- 
mators of a ,  b, A, B ,  and 4, respectively, and if 
the results of the complete coverage were known, 
then one could, for any experiment, compute errors 
of sampling, such as 

tribution approaches closer and closer a s  the num--.- 
ber .of repetitions increases. 

We .are typically concerned with relationships- - 
between (i) the empirical distribution of, JF- and 
(ii) the theoretical distribution of f ,  for the given 
sampling procedure. Study of these relationships 
helps in the use of sampling for purposes of making 
estimates of characteristics of the frame. 

Let a be the characteristic of the complete-cov- 
erage that the generic symbol JE- estimates. Then if 

(9) E% = a, 

(6 )  A 2 = 2 - a ,  

( 7 )  Aij = ij - b, 

( 8 )  . A f = f - 4 .  

It -is an exciting fact that a single sample- 
provided that it is big enough (usually 25, 30, or 
more sampling units), and-provided that it is de- 
signed properly and skillfully in view of possible 
statistical peculiarities of the frame and is carried 
out in reasonable conformance with the specifica- 
tions-will make possible an estimate, based on 
theory to follow later, of the important charac- 
teristics of the distribution of sampling variation 
of all possible samples that could be drawn from 
the given equal complete coverage and processed 
by the specified sampling procedure. 

-Standard error and mathematical bias. We con- 
tinue our conceptual experiment. 

( d )  Return the sample of n cards to the frame, 
and repeat steps (b)  and ( c )  by the same sam- 
pling procedure, to form a new sample and new 
estimates 2, ,g, f. Repeat these steps again and 
again, 10,000 times or more. 

Explicit statements will now be confined to 2. 
The 10,000 experiments give an empirical distri- 
bution for 2, by which one may count the number 
of samples for which 3 lies between, for example, 
100 and 109. We visualize an underlying theo- 
retical distribution of 3, which the empirical dis- 

the sampling procedure is said to be unbiased. (The 
symbol E denotes expectation, the mean of the 
theoretical distribution of 2.) But if 

the sampling procedure has the mathematical bias 
C. In any case, the variance of the distribution 
of f is 

(11) u2, = E(% -. E f  )*, 

and its square root, u i ,  is the standard error of the 
sampling procedure for the estimator 3. Thus, a 
sampling procedure has, for any estimator, an ex- 
pected value, a standard error, and possibly a 
mathematical bias (see the section "Possible bias 
in ratio estimators," below). 

Uncertainty from accidental variation. Under 
the conditions stated above, the margin of uncer- 
tainty in the estimator f that is attributable to 
sampling and to small, independent, accidental vari- 
ations, including random error of measurement 
(Type 111 in the next section), may be estimated. 
for a specified probability, as t&, where &* is an 
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estimator of a,. The factor t depends on the proba- 
bility level selected for the margin of uncertainty 
(which will in turn depend on the risks involved) 
and .also on the number of degrees of freedom in 
the estimator 61. In large samples the distributions 
of most estimators are nearly normal, except 
for frames that exhibit very unusual statistical 
characteristics. The standard deviation, UJ, then 
contains nearly all the information regarding the 
margin of uncertainty of 2 that is attributable to 
accidental variation. Presentation of the results 
of a survey requires careful consideration when 
there is reason to question the approximate nor- 
mality of estimators (Fisher 1956, p. 152; Shew- 
hart 1939, p. 106). 

Random selection. It is never safe to assume, 
in statistical work, that the sampling units in a 
frame are already mixed. A frame-comes in layers 
that are different, awing-to geographic-origin or to 
order of production. - Even -blood, for example, has 
different properties in different parts of the body. 

A random variable is the -result of a random 
operation. A system of selection that depends on 
the use, in a standard manner, of an acceptable 
table of random numbers is acceptable as a ran- 
dom selection. Methods of selection that depend on 
physical mixing, shuffling, drawing numbers out of 
a hat, throwing dice, are not acceptable as random, 
because they have no predictable behavior. Neither 
are schemes that merely remove the choice of 
sampling units fram the judgment of the inter- 
viewer. Pseudo-random numbers, generated under 
competent skill, are well'suited to certain types of 
statistical investigation [see RAKDOM NUMBERS]. 

Types of uncertainty in statistical data 

All data, whether obtained by a complete census 
or by a sample, are subjecr to various types of un- 
certainty. One may reduce uncertainties in data 
by recognizing their existence and taking steps for 
improvement in future surveys. Sample design is 
an attempt to strike an economic balance between 
the different kinds of uncertainty. There is no 
point, for example, in reducing sampling error far 
below the level of other uncertainties. 

Three types of uncertainty. The following dis- 
cussion will differentiate three main types of un- 
certainty. 

Type 1. Uncertainty of Type I comprises built- 
in deficiencies, or structural limitations, of the 
frame, questionnaire, or method of test. 

Any reply to a question, or any record made by 
an instrument, is only a response to a stimulus. 
What stimulus to apply is a matter of judgment. 
Deficiencies in the questionnaire or in the method 
of test may therefore arise from incomplete under- 

standing of the problem or from unsuitable methods 
of investigation. Structural limitations are inde- 
pendent of the size or kind of sample. They are 
built in: a recanvass will not discover them, nor 
will calculation of standard errors or other statis- 
tical calculations detect them. 

Some illustrations of uncertainty of Type I are 
the following: 

( a )  The frame may omit certain important seg- 
ments of the universe. 

(b )  The questionnaire or method of test may 
fail to elicit certain information that is later found 
to be needed. The questionnaire may contain inept 
definitions, questions, and sequences. Detailed ac- 
counting will give results different from those 
given by mere inquiry about total expenditure of a 
family for some commodity; date of birth gives 
a different age from that given in answer to the 
simple question, How old are you? There may be 
differential effects of interviews depending on such 
variables as sex and race of the interviewer. 

( c )  Use of telephone or mail may yield results 
different from those'obtained by personal interview. 

(d)  Judgments of coders or of experts in the 
subject matter may differ. 

(e)  The date of the survey has an important 
effect on some answers. 

Type 11. Uncertainty of Type 11 includes opera- 
tional blemishes and blunders-for example : 

( f )  One must presume the existence of errors 
of a noncanceling nature (persistent omission of 
sampling units designated, persistent inclusion of 
sampling units not designated, persistent favor in 
recording results). 

( 9 )  One must presume the existence of bias 
from nonresponse. 

(h)  Information supplied by coders for missing 
or illegible entries may favor high or low values. 

(i) There may be a large error, such as a unique 
blunder. 

Type 111. Uncertainty of Type 111 is caused by 
random variation. Repeated random samples drawn 
from the same frame will give different results. 
Besides, there are inherent uncorrelated, nonper- 
sistent, accidental variations of a canceling nature 
that arise from inherent variability of investigators, 
supervisors, editors, coders, punchers, and other 
workers and from random error of measurement. 

Standard error of an estimator. The standard 
error of a result includes the combined effects of 
all kinds of random variation, including differ- 
ences within and between investigators, super- 
visors, coders, etc. By proper design, however, it 
is possible to get separate estimates of some of 
these differences. 

A small standard error of a result signifies 



SAMPLE SURVEYS : The Field 6 0 1 

(i) that -the variation between repeated samples 
will be small and (ii) that the result of the sample 
agrees well with the equal complete coverage of 
the same frame. It usually tells little about uncer- 
tainties of Type 11 and never anything about un- 
certainties of Type I. 

Limitations of statistical inference. Statistical 
inference (qstimates, standard errors, statistical 
tests) refers only to the frame that was sampled 
and investigated. No statistical calculation can, by 
itself, detect or measure nonsampling errors, al- 
though side experiments or surveys may be helpful. 
No statistical calculation can detect defects in the 
frame., No statistical calculation can bridge the 
gap between the frame covered and the universe. 
This is as true of probability sampling as it is of 
judgment sampling, and it is true for a complete 
census of the frame as well. 

Comparison of surveys. Subs tan tial differences 
in results may come-.from - what appear to be in- 
consequential difference~ in questionnaires or in 
methods of hiring, trainihg, and supervision of 
interviewers and. coders or in  dates af interview- - 
ing. The sampling error in a sample is thus not 
established by comparison against 'a complete 
census unless the complete census is the equal 
complete coverage for the sample. 

Recalls on people not at home. Many charac- 
teristics of people that are not at home at first 
call, or that are reluctant to respond, may be very 
different from the average. What is needed is 
response from everyone selected, including -those 
that are hard to get. To increase the initial size 
of the sample is no solution. Calculations that 
cover a wide variety of circumstances show that 
the amount of information per dollar expended on 
a survey increases with the numbei- of recalls, the 
only practicable limit being the time for the com- 
pletion of the survey. Good sample design there- 
fore specifies that four to six well-timed recalls be 
made or specifies that recalls continue until the 
level of response reaches a prescribed proportion. 
Special procedures, such as intensive subsampling 
of those not at home on the first or second call, 
have been proposed (see Leven 1932; Hansen & 
Hurwitz 1946; Deming 1960). 

Surveys by post. One can often effect important 
economies by starting with a mail survey of a 
fairly large sample properly drawn from a given 
frame, then finishing with a final determined effort 
in the form of personal interviews on all or a 
fraction (one in two or one in three) of the people 
that failed to reply (Leven 1932). Mail surveys 
require a frame, in the form of a list of names 
with reasonably accurate addresses, and provision 
for keeping records of mailings and of returns. 

They are therefore especially adaptable to surveys 
of members of a professional society, subscribers 
to a journal, or subscribers to a service. [For fur- 
ther discussion o f  mail surveys, see ERRORS, article 
On NONSAMPLING ERRORS.] 

Simple designs for enumerative purposes 
The aim in an enumerative study is to count the 

number of people in an area that have certain 
characteristics or to estimate a quantity, perhaps 
their annual income, regardless of how they ac- 
quired these characteristics. The aim in an analytic 
study is to detect differences between classes or 
to measure the effects of different treatments. 

For illustration consider a study of schizo- 
phrenics. One enumerative aim might be to esti- 
mate the number of children born to schizophrenic 
parents before onset of the disease or before the 
first admission of one of the parents to a hospital 
for mental diseases. Further aims of the same 
study might be analytic, such as to discover differ- 
ences in fertility or in duration of hospitalization 
caused by different treatments, differences %etween 
communities, or differences between time periods. 

The finite multiplier typified by l / n  - 1/N (to 
be seen later) appears in estimators for enumera- 
tive purposes. It has no place in estimators for 
analytic purposes. 

Optimum allocation of effort for an enumerative 
aim may not be optimum for an analytic aim. 
Moreover, what is optimum- for one enumerative 
characteristic may not- be optimum for another. 
Hence, it will usually be necessary to compromise 
between competitive aims. 

Enumerative aims will occupy most of the re- 
maining space in this article. 

The theory presented in this section is for the 
design commonly called simple random sampling. 
This is often a practicable design, and the theory 
forms a base for more complex designs. 

A simple procedure of selection and some simple 
estimators. Definitions of "frame," "sample," and 
other terms were introduced above. In addition, 
it will be convenient to define the coeficient of  
variation. For the x-population and y-population 
of the frame, the coefficients of variation are de- 
fined as 

In like manner, the symbol C, denotes the coeffi- 
cient of variation of the empirical or theoretical 
distribution of the random variable x .  The square, 
C:, of the coefficient of variation C, is called the 
 el-variance of x.  The coefficient of variation is 
especially useful for characteristics (such as height) 
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that are positive. It is often helpful to remember, 
for example, .that Ct = C, = C, because x, 2, and 
X are constant multiples of each other. 

The procedure of selection specified earlier gives 
every member of the frame the same probability 
of selection as every other member, wherefore 

That is, P and 5 are unbiased estimators of a and 
b, respectively. Moreover, 

are unbiased estimators of A and B. 
Often, a ratio such as 

is of--special interest. The-sample gives 

as an estimator-of 4. If the total y-population, B, 
is known from-another source, such as a census, 
A may be estimated by the formula 

(17) X' = B f .  

This estimator X' is called a ratio estimator. It will 
be more precise than the estimator X = N 3  in ( 14 ) 
if the correlation between xi and yi is high. Other 
estimators will be discussed later (for example, 
regression estimatorsj. Theory provides a basis for 
the choice of estimator. 

Possible bias in ratio estimators. Necessary and 
sufficient conditions for there to be no bias in f 
as an estimator of 4 are that Ey # 0 and that xi/y, 
and y, be uncorrelated-that is, that E[(x/y)y] = 
E(x/y)Ey. In practice, if bias exists at all, it is 
usually negligible when the sample contains more 
than three or four sampling units. 

Sampling with and without replacement. Usu- 
ally, in the sampling of finite populations, one 
permits a sampling unit to come into the sample 
only once. In statistical language, this is sampling 
without replacement. Tests of physical materials 
are sometimes destructive, and a second test would 
be impossible. To draw without replacement, one 
simply disregards a random number that appears 
a second time (or uses tables of so-called random 
permutations). 

There are circumstances, however, in which one 
accepts the random numbers as they corne and 
permits a sampling unit to come into the sample 
rnore than once. This is sampling with replacement. 

Hereafter, most equations will be written for 

sampling without replacement. It is a simple matter 
to drop the fraction 1/N from any formula to get 
the corresponding formula for sampling with re- 
placement. Actually, in practice, samples are usu- 
ally such a small part of the frame that the fraction 
1/N is ignored, even though the sampling be done 
without replacement. 

Variances. The variances of the estimator f 
derived from the sampling procedure described 
earlier are 

without { replacement 

I with u2 
u p T '  replacement 

(The sign = indicates an approximation that is 
sufficiently close in most practice.) 

Similar expressions. hold for 9. For the ratio 
f = 33/ij, the approximation 

is useful if n be not too small. Here 

(20) 1 
Cab = -x Nab ( a i  - a ) ( b i  - & )  

is the rel-covariance of the x-population and y- 
population per sampling unit in the frame. 

When the ratio estimator of the total x-popula- 
tion is derived as  in eq. ( 17), eq. ( 19) gives the 
same approximation for C2,. . 

Estimate of aggregate characteristic-number of 
units in class unknown. It often happens in prac- 
tice that one wishes to estimate the aggregate 
value of some characteristic of a subclass of a 
group when the total number of units in the sub- 
class is unknown. For example, one might wish to 
estimate the aggregate income of women aged 15 
or over that live in a certain district, are gain- 
fully employed, and have at least one child under 
12 years old at home (this specification defines the 
universe). The number of women that meet this 
specification is not known. An estimate of the 
average income per woman of this specification, 
prepared from a sample, suffers very little from 
this gap in available knowledge, but an estimate 
of the total income of all such women is not so 
fortunate. 

As an illustration, suppose that the frame is a 
serialized list of N women aged 15 or over and 
that the sample is a simple random sample of n of 
these women, drawn with replacement by reading 
out n random numbers between 1 and N. Informa- 
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tion on the n women is collected, and it is noted 
which ones belong to the specified subclass-that 
is, which ones live in a certain district, are gain- 
fully employed, and have at least one child under 
12  years old at home. Suppose that this number is 
n, and that the average income of the n, women is 
f . .  Of course, n,  is a random variable with a bi- 
nomial distribution. 

What is the rel-variance of Z,? Let C: be the 
rel-variance between incomes of the women in the 
frame that belong to the subclass. It is a fact that 
the conditional rel-variance of %,, for samples of 
size n, of the specified subclass, will be C:/n,, just 
as if the women'of this subclass had been set off 
beforehand into a separate stratum and a sample 
of size n, had been drawn from it. 

The conditional expected value of f ,  over all 
samples of fixed size n ,  in the subclass has more  
over the convenient property of being the average 
income of all the women in the frame that-belong 
to this subclass. It is for this reason that the-con- 
ditional rel-variance of 2, is useful for assessing - 
the precision of a sample at hand. For purposes of 
design, one uses the rel-variance of 8, over all 
samples of size n, which is C:E(l/n,) ,  or very 
nearly C:[1 + Q/nP]/nP, where P is the proportion 
of all women 15 or over that meet the specification 
of the subclass, and P + Q = 1. 

In contrast, any estimator, X,, of the aggre- 
gate income of all the women in the specified sub- 
class will not have such convenient properties as 
2,. The conditional expectation of X,, for samples 
of size n,, is not equal to the aggregate income of 
all the women in the frame that belong to the sub- 
class. The conditional rel-variance of X, for a 
sample of size n, at hand, although equal to the 
conditional rel-variance of 2, , . therefore requires 
careful interpretation. Instead af attempting to in- 
terpret the conditional rel-variance of X, , one may 
elect to deal with the variance of X, in all possible 
samples of size n. Thus, if X, is set equal to 
(N/n)n,%, (here N/n is used as an expansion 
factor equal to the reciprocal of the probability of 
selection), it is a fact that the rel-variance of X, 
over all samples of size n will be (Cq + Q)/nP (see 
Deming 1960, p. 129) .  

The problem with X, arises from the assumption 
that N., the number of women in the frame that 
meet the specification of the subclass, is unknown. 
If N, were known, one could form the estimator 
X, = N.%, which would have all the desirable prop- 
erties of %,. 

One way to reduce the variance of the total 
income, X,, of the specified class is ( 1 )  to select 
from the frame a large preliminary sample, ( 2 )  by 

an inexpensive investigation to classify the units 
of the preliminary sample into two classes, those 
that belong to the specified class and those that 
do not, ( 3 )  to investigate a sample of the units that 
fell into the specified class, to acquire information 
on income. The preliminary sample provides an 
estimate of N,, and the final sample provides an 
estimate of 3, .  The product gives the estimate 
X, = N , f ,  for the total income in the specified 
class. (For the variance of X, ar.d for optimum 
sizes of samples, see Hansen, Hurwitz, & Madow, 
1953, vol. 1, pp. 65 and 259.) 

If ,  further, N were not known and only the 
probab~lity, T ,  of selection, to be applied to every 
sampling unit in the frame, were known, both n 
and n, will be random variables, and there will be 
a further inflation of the rel-variance of any esti- 
mator of the aggregate income-of all the women 
in the specified subclass. Thus, if X, be,set equal 
to n,Z,/.rr for such an estimator, then the uncondi-_ 
tional rel-variance of X, will be f C: + l)/nP. The 
conditional rel-variance of 2, , however, is still 
Cf/72, . 

It may be noted that for a small subclass there 
is little difference between C: + Q and C: 4- 1 .  

Examples are common. Thus, one might read 
out a two-digit random number for each line of a 
register, following the rule that the item listed on 
a line will be drawn into the sample if the random 
number is 01.  If counts from outside sources are 
not a t  hand or are not used, then the rel-variance of 
an estimator, X,, of the total number or total value 
of any subclass of items on the register contains 
the factor Cg + 1. 

Use of thinning digits. Reduction of the prob- 
ability of selection of units of specified character- 
istics (such as items of low value) through the use 
of thinning digits may produce either the factor 
Ct + Q or the factor C?, + 1 in the rel-variance of 
an estimator of an aggregate, depending on the 
mode of selecting the units. 

Estimates of variances. Estimates of variances 
are supplied by the sample itself, under proper con- 
ditions, as was discussed above. Some of the more 
important estimators follow, denoted by a circum- 
flex ( ). For the variance of 2, 

with a similar expression for c?;. For the covariance, 

Eqs. ( 2 1  ) and ( 2 2  ), with N infinite. were devel- 
oped by Gauss (1823 j. These estimators are un- 
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biased; fl is a slightly biased estimator of a,, 
but -the bias is negligible for n moderate or large. 

u n 4 r  almost all conditions met in practice, one 
may set. 

and compare this quantity with tabulated values of 
t to find the margin of uncertainty in 2 for any 
specified, probability. Such calculations give excel- 
lent approxinlations unless the distribution of sam- 
pling unhs in the frame is highly skewed. Extreme 
skewness may often be avoided by stratification 
(discussed below). 

A useful approximate estimator for the rel- 
variance of f = X/Y = 2/ij is 

This formula is derived by combination of -eqs. - 

(19), (21), and (22). In accordance with a pre- 
vious remark, one may take C,. = C,, where X' 
is the ratio-estimator of A as given by ( 17). 

Size of frame usually not important. Because 
of the way in which N enters the variances, the 
size of the frame has little influence on the size of 
sample required for a prescribed precision, unless 
the sample is 20 per cent or more of the total frame. 
For instance, the sample required to reach a speci- 
fied precisionwould be the same for the continental 
United States as for the Boston Metropolitan Area, 
on the assumption- that the underlying variances 
encountered are about the same for the entire 
United States as for Boston. 

Special form for attributes (0,l variate). In 
many studies a sampling unit gives only one of 
two possible observations, such as yes or no, male 
or female, heads or tails. The above equations then 
assume a simple form. 

If each person in a frame is a sampling unit, 
and if a, = 1 for yes, a ,  = 0 for no, then the total 
x-population, A, in the frame is the total number 
of yes observations that would be recorded in the 
equal complete coverage, and a is the proportion 
yes, commonly denoted by p. The variance between 
the a, in the frame is 

where p + q = 1. 
The random vakiate, x i ,  will take the value 0 

or 1; 

will be the number of yes observations in the sam- 
ple, and 

(27) 

will be the proportioi yes in the sample. Replace- 
ment of 2 by p in previous equations shows that 
@ is an unbiased estimator of the proportion yes 
in the frame and that 

It is important to note that this variance is valid 
only if each sampling unit produces the value 0 
or 1. It is not valid, for instance, for a sample 
of segments of area if there is more than one per- 
son per segment, or if the segments are clustered 
(as .discussed below). 

For an estimate of the variance of @ (provided 
the sampling procedure meets the conditions stated) 
one may use 

wherefi+ § =  1. 
How good is an estimator of a variance? The 

variance of the estimator 6; in eq. <21) depends on 
the standardized fourth -moment, &, of the .frame 
and on the number'of degrees of freedom for the 
estimator. Thus, if one defines 

then the rel-variance of the estimator 6: of eq. (21 ) 
will be (8, - l ) /n ,  which diminishes with n. 

Systematic selection. A simple and popular way 
to spread the sample over the frame is to select 
every Zth unit, with a random start between 1 and 
Z, where Z = N/n. This is called systematic sam- 
pling with a single random start, and it is one form 
of patterned sampling. In certain kinds of materials, 
specifically those in which nearby sampling units 
are, on the average, more similar than units sep- 
arated by a longer interval, systematic sampling 
will be slightly more efficient than stratified random 
sampling (Cochran 1946). 

A disadvantage of systematic sampling with a 
single random start is that there is no strictly valid 
way to make a statistical estimate of the standard 
enor of a result so obtained. This is because the 
single start is equivalent to the selection of only 
one sampling unit from the Z possible sampling 
units that could be formed. One may nevertheless, 
under proper conditions, get a useful approximation 
to the rel-variance by using the sum of squares of 
successive pairs. Eq. (21) with n = 2 and N = Z 
gives the estimator 

where the summation runs over all pairs. 
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Hidden and unsuspected periodicities often turn 
up. and in such cases the above formula may give 
a severe underestimate or overestimate of the vari- 
ance. For example, every nth household might be 
nearly in phase with the natural periodicity of 
income, rent. size of family, and other character- 
istics associated with corners and with the config- 
uration of dwelling units within areas and within 
apartment houses. Systematic sampling of physical 
elements or of time intervals can lead to disaster. 

A statistician will therefore justify a single ran- 
dom start and use of eq. (31 ) only if he has had 
long experience with a body of material. 

Instead of a single random start between 1 and 
N / n ,  one may take two random starts between 
1 and 2N/n and every (2N/n)th sampling unit 
thereafter. Extension to multiple random starts is 
obvious. Two or more random starts give a valid 
estimate of the variance. Fresh random starts every 
six or eight zones will usually reap any possible 
advantage of systematic sampling and will amid 
uncertainty in estimation of the variance. 

Efficiency of design. The relative efficiency of 
two sampling procedures, I and 11, that give nor- 
mally distributed estimators of some characteristic 
are by definition the ratio of the inverses of the 
variances of these estimators for the same size, n, 
of sample. In symbols (E  denotes efficiency), 

This concept of efficiency is due to Fisher (1922). 
Comparison _of costs is usually more important 

than comparison of numbers of cases. Let the costs 
be c, and c,, for equal variances. Then 

Comparison of efficiencies of estimators whose 
distributions depart appreciably from normality 
require special consideration. 

Sampling moving populations. A possible pro- 
cedure in sampling moving populations is to count 
and tag all the people visible from a number of 
enumerators' posts through a period of a day or a 
week (the first round) and then to repeat the count 
from the same or different posts some time later 
( the seccnd round). The n, people counted and 
tagged in the first round constitute a mobile frame 
for the second round. If the number of people 
counted in the first round is n , ,  and if the number 
counted in the second round is n,, with an inter- 
section of n,, for people counted in both rounds, 
then an estimator of the total number of mobile 
inhabitants in the whole area is fl = n,n,/n,: 
(Yates 1949, p. 43; Deming & Keyfitz 1967). 

More complex designs 

Considerations of cost-clustering. The total 
cost of a survey includes cost of preparing the 
frames and cost of travel to the units selected. 
In some surveys it may be possible to get more 
information per unit cost by enlarging the sam- 
pling unit, a procedure commonly called clustering. 
One may, for example, define a sampling unit as 
comprising all the dwellings in a compact segment 
of area. Further, one may, with experience and 
care, subsample dwelling units from a selected 
duster or select one member of a family where 
two or more members qualify for the universe. 
Again, in a national survey, one may restrict the 
sample to a certain number of counties that will 
come into the sample by a random process. Or, in 
a survey of a city, one may restrict the sample to a 
random selection of blocks. 

Any such plan reduces theinterviewer's expenses - -- 

for travel and reduces the cost of preparing the 
frame. However, restriction of the sample-usually - _ 
also increases variances, unless -the total n ~ l m b e r  - - 

of households in the Sample be increased as com- 
pensation. It shouId be remembered, though, that 
the actual precision obtained by the use 'of cluster 
sampling may be nearly as good as that obtained 
by an unrestricted random selection of the same 
number of dwelling units with no clustering. 

Theory indicates the optimum balance between 
enlargement of the sampling unit and the number 
of sampling units to includein the sample. Obvi- 
ously, the theory -is more complex than that dis- 
cussed in the last section. Stratification, ratio esti- 
mators, and regression estimators are additional 
techniques that, under certain conditions, yield 
further increases in efficiency (see below). 

An example. The following illustration refers 
to a sample of a city: ( i )  Suppose that it has been 
determined in advance that for the main purposes 
of a survey the optimum size of areal unit is a 
compact group of five dwelling units, called a seg- 
ment. ( i i )  A sampling unit within the city will con- 
sist of f i  segments from a larger number of seg- 
ments contained in a block. The fi segments of a 
sampling unit (if ii > 1 )  should be scattered over 
the block. A good way to effect this scatter is by a 
systematic selection. (iii) The m sampling units in 
the city will be selected by random numbers. For 
simplicity, assume that all blocks in the city con- 
tain an equal number, R, of segments. Suppose 
that there are 

III blocks in the whole city, 
N segments in a block, 
N = MR segments in the whole city, 
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fi segments in a sampling unit, 
n / f i  sampling units in a block, 
~ N / f i  or N/fi sampling units in the whole city, 
m sampling units in the sample. 

Then if 

(34) 

one may take 

(35) X = N Z  
for an estimator of the x-population in the whole 
city. For this estimator, 

(36) 

and 

C, = C;, 

var f = N - m i i  (=+--). a: N-f i  of  
N - f i  N - 1  mfi 

If m is small compared with M, 

If, also, ii is small compared with N, 

Here a: is ?he variance between blocks of the mean 
x-population per sampling unit, and u,: is the 
average variance between sampling units within 
blocks. . 

Important principle in size of secondary unit. 
Suppose that the cost of adding one more block 
to the sample is c,  (cost of maps, preparation, de- 
lineation of segments, travel) and that the cost of 
an interview in an additional sampling unit is c , .  
Then the total cost of the survey will be 

. . 
(40) K = me, + miic, . 
In eq. (37) var f will be at its minimum for a 
fixed cost K if 

optimum f i .  

This equation was derived by both L. H. C. Tippett 
and Shewhart, independently, in 1931. 

Note that m does not appear in this equation. 
That i-s, the optimum value of r7 on the basis of the 
cost function (40) is independent of m, the num- 
ber of sampling units in the sample (and very 
nearly independent of the number of blocks in the 
sample). 

The optimum m is found by substituting the 
optimum f i  from eq. (41) into eq. (40) and solv- 
ing for m. Of course, it is necessary to assume 
values for u,,/ub and for V m  to do this. (Be- 

cause each sampling unit will usually fall in a 
different block, m will usually be exactly or nearly 
as large as the number of blocks in the sample.) 
Usual numerical values of a, : a(, and of c, : c, lead 
to small values of fi and to large values of m. 
Efficient design therefore usually requires a small 
sample from a block and dispersion of the sample 
into a large number of blocks. 

Extension of this theory to a national sample, 
and to stratified designs-and ratio estimators, leads 
to the same principle. 

Variation in size of segment will increase var 2 
by the factor 1 + Cyn, where C; is the rel-variance 
of the distribution of the number of dwelling units 
per segment. A similar factor, 1 + C:.,/m, measures 
the increase in var f from variation in the number 
of segments per block. 

Replicated designs for ease in estimation of vari- 
ance. Replication of a sample in two or more 
interpenetrating networks of samples- will provide 
a basis for rapid calculation of a valid estimate of 
the standard error of any result, regardless of- the - - 
complexity ef the procedure of selectionandsf the 
formulas for the formation of estimates [Mahala- 
nobis 1944; Deming 1950; 1960; see also INDEX 
NUMBERS, article on SAMPLING]. 

Stratified sampling 
The primary aim of stratified sampling is to in- 

crease -the amount of information per unit of cost. 
A further aim may be to obtain adequate informa- 
tion about certain strata of special interest. 

One way to carry out stratification is to rearrange 
the sampling units-in the frame so as to separate 
them into classes, or strata, and then to draw sam- 
pling units from each class. The goal should be 
to make each stratum as homogeneous as possible, 
within limitations of time and cost. Stratification is 
equivalent to blocking in the design of an experi- 
ment. It is often a good plan ( i )  to draw a pre- 
liminary sample from the frame without stratifica- 
tion; (ii) to classify into strata the units in the 
preliminary sample, and (iii) to draw, for the final 
sample, a prescribed number of sampling units 
from each stratum so formed. Step ( i )  will some- 
times require an inexpensive investigation or test 
of every sampling unit in the preliminary sample 
to determine which stratum it belongs to. 

Stratification is one way to make use of existing 
information concerning the frame other than the 
information obtained from investigating the sam- 
pling units in the final sample itself. Other ways 
to use existing information are through ratio esti- 
mators and regression estimators (see below). 

In practice a frame is to some extent naturally 
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Table 2 - Notation and definitions for the frame (M = 2 strata) 
l 

B E W E E N  THE POPULATIONS 
OF THE SAMPLING UNITS 

WITHIN THE STRATUM 

POPULATION 

NUMBER OF 
STRATIIM'S Average per 

SAMPLING UNITS 
PROPORTION O F  sampling unit Total 
SAMPLING UNITS in the in the 

STRATUM 

1 

2 

Stondord 
deviation Vorionce In  the frome In  tho somplo IN THE FRAME strotum 

Nl 711  
Nl  P, = - 
N a1 

Total  for the f rame 

~ n w e i g h f e d  overage 
p e r  stratum 

W e i g h t e d  average 
p e r  sampling unit e m  ~ 2 ,  

Source: Darning 1960, p. 286. 

stratified to begin with. Thus, areas in geographic 
order usuallv are already pretty well stratified in 
respect to income, occupation, density of popula- 
tion, tastes of the consumer, and other character- 
istics. No frame arrives thoroughly mixed, and any 
plan of sampling should be applied by zones, so as 
to capture the natural stratification. Theory serves 
as a guide to determine whether further stratifica- 
tion would be profitable. 

Plans of stratification for enumerative studies. 
Several -plans of stratified sampling for enumera- 
tive studies will now be described. 

The notation and definitions to be used in this 
discussion are given in tables 2 and 3. (Note that 

and fi are defined differently here than they were 
earlier.) These tables are presented in terms of 
two strata ( M  = 2) ,  but extension to a greater num- 
ber of strata follows obviously. The following addi- 
tional definitions are needed: - 

the average reverse standard deviation between 
sampling units within strata, where Q, + Pi = 1. 

Plan A (no stratification): The scheme of sam- 
pling described above will be designated- plan A. 
It is needed here for comparison, and also because 
it constitutes the basis for selection from any 
stratum. 

Note that in plan A, as in plans B, D, F, and H, 
below, all the sampling units in the frame have 
equal probability of selection, namely n/N, where- 
fore E f  = a and EX = A. 

PI knewn-whole frame classified. Two sam- 
pling plans for which the proportions in each 
stratum are known (or ascertainable) and the 
the whole frame is classified will now be described. 

Plan B (proportionate sampling): Decide with the 
help of eq. (47)  the size, n, of the sample required. 
Compute next 

(44 n ,  = nN,/N = nPi .  

Draw by random numbers, as in plan A, a sample 
of size n ,  from stratum i. Investigate every member 
of the sample, and calculate 

(45) X, = Nlxl /nl ,  X? = N2x2/n2, etc. 

the average reverse variance between sampling 
units within strata, and 

Table 3 - Notation and definitions for the sample 

Vorionce 01 
this estimvtor* 

Population 
in the sample 

x-population 
"1 in stratum 1 

Mean populotion Estimated total 
per sampling unit population 

var XI 

x-population 
"2 in stratum 2 var X? 

Sum x var X 

Tho vorionces ore odditive only if the N ,  (or P , )  ore known ond usod in tho ortimator X. 

Source: Doming 1960, p. 287. 
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(For simplicity, most formulas will henceforth be 
written for two strata, in conformance with tables 2 
and 3. Extension to more strata is obvious.) Here, 
n,/Ni = n/N, wherefore 

X = X, + X2 

and 

plan B. 

The n i  of eq. (44) and later expressions will not 
in general be integers. In practice one uses the 
closest integer; the effects on variance formulas 
are usually completely negligible. 

Plan C (Neyman sampling): Decide with the help 
of eq. (49) the size, n, of the sampksequired. 
Compute next the- Neyman allocation (Neyrnan 
1934), 

Draw by random numbers, as in plan A, a sample 
of size n, from stratum i. Investigate every member 
of the sample. Form estimators XI, X2, and X = 
X, + X, . Form 2 = X/N for an unbiased estimator 
of a. Here 

plan. C. 

The Neyman .allocations are the optimal ni for 
minimizing varLf when the Pi are known. 

Pi Iznown-only a sample classified. One may, 
in appropriate circumstances, require only the clas- 
sification of a preliminary 'sample drawn from the 
frame. The decision hinges on the costs of classifi- 
cation and the expected variances of the plans 
under consideration. 

Plan D: Decide with the help of eq. (50) the size, 
n, of the sample required. Draw the sample as in 
plan A. Classify the sampling units into strata. The 
number, n; , of sampling units drawn from stratum 
i will be a random variable. Carry out the investi- 
gation of every unit of the sample. Form XI, X: , X, 
and f as in plan B. Then 

plan B 

Plan E: Decide with the help of eq. (52) the 
size, n, of the final sample. Draw by random num- 
bers a preliminary sample of size n'. Thin (reduce) 

by random numbers the strata of the preliminary 
sample to reach the Neyrnan ratios 

and simultaneously the total sample, n. Here n:, 
n;, etc., are the sizes of the preliminary sample in 
the several strata, and n, , n2,  etc., are the sizes of 
the final sample. For greatest economy, choose n' 
so that one stratum will require no thinning. Carry 
out the investigation of every unit of the final sam- 
ple. Form the estimators XI, X2, and X = X, + X,. 
Then f = X/N will again be an unbiased estimator 
of a, but now 

plan C - 
(e ,o )2  c 1 1 1 - -  var* = --- 

n N'+n(7-x)u@E 
(52) plan E 

1 = -[(e,o)z n + I - , 

the latter form useful-if N is 1argerelati~e.to .rtl. 
Sequential-classification of units .intostrata.- We 

now describe two plans in which the sample-sizes, 
n,  , are reached sequentially, with considerable sav- 
ing under appropriate conditions. 

Plan F: Determine the desired sample-sizes, n,, 
as in plan B. Draw by random numbers one unit 
at a time from the frame, and classify it into its 
proper stratum. Continue until the quotas, n, , are 
all lilled. Form X as in plan B; varf  will be the 
same as for plan B. 

Plan G: This is the same as plan F except that 
the-sample sizes, n, , are fixed as in plan C; Form X 
as in plan C; varf will be the same as for plan C. 

Pi not known in advance. When the propor- 
tions, Pi,  in the frame are unknown, estimates 
thereof must come from a sample, usually a pre- 
liminary sample of size N' > n, where n is the size 
of the final sample. 

Plan H: Decide with the help of eq. (55) the 
size, n, for the final sample. Compute the optimum 
size, N', of the preliminary sample by the formula 

where c, is the average cost of classifying a sam- 
pling unit in the preliminary sample, and c2 is the 
average cost of the final investigation of one sam- 
pling unit. 

The procedure is to draw as in plan A a pre- 
liminary sample of size N' and to classify it into 
strata. Treat the preliminary sample as a frame of 
size N'. Then thin all strata of the preliminary sam- 
ple proportionately to reach the final total size, n. 
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Carry out the investigation of every sampling unit 
in the final sample. An unbiased estimator of a is 

where s is the total x-population in the sample. 
Then 

plan H, 

is an excellent approximation if N be large relative 
to N'.  

Plan I: Decide,with the help of eq. (59) the size, 
n, for the final sample. Compute the optimum size, 
N', of the preliminary sample, using the equation 
( Neyman 1938 ) 

Draw as in plan A- a -preliminary sample of size 
N'. Classifyit as in plan H. Thin the strata differ- 
entially to satisfy the Neyman .ratios 

and to reach the desired final total sample-size, n. 
Carry out the investigation of every sampling unit 
in the final sample. An unbiased estimator of a is 

for which 

- ( e I c ) 2  varx s - f 
n + -iq~' 

plan I, 

is an excellent approximation if N be large relative 
to N' and to n. 

One may use plan F or plan G in combination 
with plan H or plan I to reap the benefit of many 
strata without actually classifying the entire pre- 
liminary sample, N' (Koller 1960). 

Gains of stratified sampl ing .  Gains of stratified 
sampling can be evaluated by comparing variances. 
Denote by A, B, and C the variances of the estima- 
tors of a calculated by the plans A, B, and C. Then 

For example, if PI = .6, P, = .4, and a;,= .8u2, 
( 4  - B ) / A  would be ( 1  - .8)/1 = .2, meaning that 
100 intcrvie~vs selected according to plan B would 

give rise to the same variance as 125 selected ac- 
cording to plan A. 

The gains of plans F and G over plan A are the 
same as the gains of plans B and C over plan A. 
The average gains in repeated trials of plans D and 
E are less. If uz and 6,,.6, are large, plans D and E 
will usually not be good choices. For large samples, 
however, in circumstances where a', and &,,en are 
not large, the gains of plans D and E may be almost 
equal to the gains of plans B and C, at considerably 
less cost. 

Eqs. (60) and (61) show that the gain to be 
expected from the proposed formation of a new 
stratum, i ,  will not be impressive unless-its propor- 
tion, P,, be appreciable, or unless its cr, or its a,  be 
widely divergent from the average. 

Stratification to estimate over-all ratio. The 
case to be used for illustrating stratified sampling 
to estimate an over-all ratio consists-of-three strata: 
stratum 1 for large units (for example, high in- 
comes or large farms), stratum 2 for medium-sized 
units, and stratum 3 for small units. Here -stra- - 
turn 1 is to be covered 100 per cent; obvious modi- 
fications take care of the case in which stratum 1 
is not sampled completely. 

First take as an estimator of + 

in the notation of tables 1 and 2, with B i  as the 
value of the y-characteristic in stratum i of the 
frame. Optimum allocation to strata 2 and 3 is 
very nearly' reached if both 

and 

wherein s, and s3 are the standard deviations of 
the ratio of x to y in strata 2 and 3. 

If, as is often the case, s2 and s, do not differ 
much, or if little is known about them in advance, 
one can still make an important gain in efficiency 
by setting n, : n, = B2 : B, or n, : n, = A, : A, .  

Another estimator of the ratio + is 

(64) f = P,f, + P,f, + P3f3, 

wherein Pi = B,/B and f ,  = Z,/ij , .  This estimator is 
sometimes preferred when f ,  varies greatly from 
stratum to stratum, and when there can be no 
trouble with small denominators. The allocation of 
sample for this estimator is, for practical purposes, 
the. same as in eq. (63)  (Cochran [I9531 1963, 
p. 175; Hansen et al. 1953, vol. 1, p. 209). 



6 1 0 SAMPLE SURVEYS : The Field 

Sequential adjustment of size of sample. It is 
sometimes possible, when decision on the size of 
sample is difficult, or when time is short, to break 
the sample in advance into two portions, 1 and 2 ,  
each being a valid sample of the whole frame. Por- 
tion 1 is definitely to be carried through to com- 
pletion. but portion 2 will be used only if required. 
This may be called a two-stage sequential method. 
It is practicable where the investigation is to be 
carried out by a small number of experts that will 
stay on the job as long as necessary but not where 
a field force must be engaged in advance for a 
definite period. 

Alodifications 'for differing costs. If investigat- 
ing a sampling unit in a particular stratum is three 
or more times as costly as the average investiga- 
tion, it may be wise to decrease the sample in the 
costly stratum, and to build up the sample in other 
strata (Deming 1960, p. 303) .  

Considerations for planning. In order to plan 
a stratified sample, certain assumptions are neces- 
sary. Fair approximations to the relevant ratios, 
such as u,, : a, u,, : u, 6,c : U L ,  \/c,:cl, will provide 
excellent allocation. Oh the other hand, bad ap- 
proximations to these ratios, or failure to use theory 
at all, can lead to serious losses. 

The required good approximations to these ratios 
may come from prior experience, or from probing 
the knowledge of experts in the subject matter. 
For example, the distribution of intelligence quo- 
tients in the stratum between 90 and 110, if rec- 
tangular, would provide u2 = ( 110 - 90)'/12, or 
33, whence cr = 5.7. Other shapes have other vari- 
ances, but shape is fortunately not critical (Deming 
1950, p. 262; 1960, p. 260).  A stratum with very 
high values should be set off for special treatment 
and possibly sampled 100 per. cent. 

Stratification for analytic studgs. As mentioned 
earlier, the aim in an analytic study is to detect dif- 
ferences between classes or to measure the effects 
of different treatments. 

The general formula for the variance of the 
difference between two means, f . ,  and f B ,  derived 
from independent samples of sizes n., and n, drawn 
by random numbers singly and without stratifica- 
tion from, for example, two groups of pztients, A 
and B, is . 

( 6 5 )  var (nm4 - * o )  = U; /nr + u;/n,, 

wherein cr: and oi are the respective variances be- 
tween the patients within the two groups. 

For such analytic studies the optimum allocation 
of skill and effort is found by setting , 

wherein c, and c, are the costs per case. Note 
that the sizes of the groups do not enter into this 
formula and that it is different from the optimum 
allocation in enumerative problems. 

In many analytic studies c r ~  and a, will be about 
equal, and so will the costs c., and C B .  In such cir- 
cumstances, the best allocation is 

( 6 7 )  n., = nn. 

Re,gression estimators 

We have already seen reduction in variance re- 
sulting from use of prior or supplemefitary knowl- 
edge concerning the frame. Use of prior knowledge 
of N to form the estin~ator X = N f  is an instance. 
Prior knowledge of B to form the ratio estimator is 
another instance. This section, on regression esti- 
mators, describes other ways to use prior or supple- 
mentary knowledge concerning the frame. Regres- 
sion estimators include the simple estimator, 2, 
and the ratio estimator, fb, as special cases, but 
they also include many other estimators, some of 
them highly useful. Like the ratio estimator of a 
total, these additional estimators are applicable 
only if independent and fairly reliable information 
is available about the y-population in the frame. 
Any estimator that takes advantage of supplemen- 
tary information may have considerable advantage 
over the simple estimator, 2 ,  if the correlation, p, 
between x ,  and y, is high, but this condition is not 
in itself sufficient. 

Specific forms of regression estimators. Assume 
simple random selection and write the regression 
estimator in the form 

( 6 8 )  2, = Z + m , ( b - i j ) ,  

wherein b is known independently from some 
source such as a census. The subscript i on R, here 
differentiates the several specific forms of regres- 
sion estimators. 

Regression estimators are closely allied with the 
analysis of covariance [see LINEAR HYPOTHESES, 

article on ANALYSIS OF VARIANCE]. The four cases 
to be considered here are taken largely from 
Hansen, Hurwitz, and Madow ( 1953). 

Simple estimator. If mi is taken as zero, the 
regression estimator obtained is .f, = f .  seen earlier. 
This procedure makes no use of supplemental in- 
formation. Under the assumption that N is large 
relative to n ,  the variance of this estimator is 

var 2, = cr? ; 

likewise, 

( 6 9 b )  var g, = u:. . 

Difference estimator. The estimator R,., often 
called the difference estimator, is practicable if 
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Tabk 4 - Re/-variances when estimator of k i s  subject to sampling error 

Case I: wmple  of size n is drawn 
as a subramplo oi n' 

c; 
C:[ l  - p2(1 - e2)(1 - n / n l ) ]  
C:[1 - p?( l  - n / n l ) ]  
C? - (2pC3Ci - C:)  ( 1 - n / n f  ) 

prior knowledge (such as prior surveys of a related 
type) provides a rough approximation to the re- 
gression coefficient p = p u 3 / u o .  This estimator is 

( 7 0 )  f2 = f + m z ( b  - ij), 
where m, is any approximate slope not derived 
from the sample under consideration. The vari- 
ance of 2, is 

var 2, = u : ( l  - p 2 )  + a i ( m ,  - p ) 2  
( 7 1 )  = a:(-1 - p2 + p2e2) ,  

where p = pu3/ws  and e  = (m2 - p ) / p .  (Note that 
pe = ( u t / u i ) ( m z  - 8 )  even if p = 0 . )  

Least squares regression estimator. If mi -is 
chosen as 

then the equation 

gives the so-called least squares regression esti- 
mator. The variance of this estimator is 

Here R is a remainder in the Taylor series involv- 
ing 1/n2 and higher powers; this remainder will 
be negligible if n  is large. 

Ratio estimator. If mi is choseii as 

the ratio estimator is 

2, = f b .  

The variance of 2, is 

( 7 7 )  var f, = u:(1 + C$/C2, - 2pC, /C , )  + R', 

R' being another remainder. For large n and for 
cj1.cg, - - 
( 7 8 )  var f ,  - 2 ~ 3 1  - p ) .  

It follows that for large -n and for m, = p and 
C ,  -- C g ,  

var 2, 2 
Y .  

varf ,  - 1  + p  

Comparison of regression estimators. If the cor- 
relation, p, between x i  and y i  is moderate or high, 

Case 11: samples of size n and n' 
are independent 

Same as in Case I 

C i [ l  - p 2 ( l  - e 2 )  + p2(1 + e)'n In'] 
Same as in Care I 

C?, - (2pC,C, - C ; ) ( l  - n / n 1 )  + ( 2 C p / n r )  (CB - PC,) 

but the line of regression of x on y misses the origin 
by a wide margin, then the estimator f3 will show 
substantial advantages over 5, and 2,. If the y- 
variate shows relatively wide spread (that is, if Cg 
is much greater than C * ) ,  the ratio estimator 2, 
may be far less precise than the simple estimator 
2,  = 2, even when p  is high, especially if the line 
of regression misses the origin by a wide margin. 
On the other hand, if the line of regression passes 
through the origin ( p C f  = C G ) ,  or nearb--through 
it, f, and 2, will have about -the same variance,-but 
f ,  may be much easier to compute. 

Estimator of b subject to sampling error. It 
often happens that the -y-population per sampling 
unit is not known with the-reliability of a census 
but comes instead from another and bigger sample. 
This circumstance introduces additional terms into 
the variances. Let n be the size of the present 
sample and n' the size of the sample that provides 
the estimate of b .  We suppose that the variance 
of this estimate of b is nuJ2/nf. The resulting vari- 
ances of the regression estimators are shown in 
Table 4. 
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