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ON A PROBABILITY MECHANISM TO ATTAIN AN
ECONOMIC BALANCE BETWEEN THE RE-
SULTANT ERROR OF RESPONSE AND
THE BIAS OF NONRESPONSE

W. Epwarps DeEMmiNG
New York University

The author postulates a probability mechanism for the
simultaneous production of the bias of nonresponse and for the
variance of response. The nonresponse arises from a graded
series of classes of the members of the universe to be
sampled. The classes range from an impregnable core of no
possible response, on up to a class of complete response.
Nonresponse arises from two sources, not at home, and re-
fusal. Refusals are of two kinds, permanent and temporary.
The variation in the amount of time spent at home, and the
variation in the firmness of the temporary refusal, produce the
graded series of classes. The bias of nonresponse arises from
the variation of any characteristic from one class to another.
The variance of response arises from the variation of any
characteristics from one member to another within a single
class, and from the random variation in the number of re-
sponses therefrom.

An increase in the size of the initial sample or a more
efficient method of selection will decrease the variance of
response, but will have no effect on the bias of nonresponse.
Successive recalls, on the other hand, decrease the bias of
response, and are more effective than an increase in the size
of the sample or a more efficient method of selection in de-
creasing the root-mean-square error which arises from both
nonresponse and from the variation of response.

The results show that without recalls, it is hazardous to
put any confidence in the result, no matter how big the sample,
even when the variation in the measured characteristic is only
two-fold from the class of lowest response to the class of
highest response.

With the levels of response assumed here (taken from aver-
age urban experience), and with an estimate formed by
summing up the initial call and the recalls, the first two recalls
effect together about a 50% reduction in the initial bias of
nonresponse, Further recalls continue to be productive. In
fact, with this method of estimation, each recall added to a
sampling plan, even to six recalls, actually increases the
amount of information obtained for each dollar expended on
interviewing.

Even with three recalls, and with only a two-fold variation
from the class of lowest response to the class of highest re-
sponse, an initial sample bigger than the equivalent of from
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A further purpose of the paper is to compare the results and the costs
of recalls with the alternative Politz plan.

CRITERION FOR THE OPTIMUM PLAN

We now define the root-mean-square error. The criterion to be
adopted here for the optimum plan is that it shall deliver a prescribed
mean square error at minimum cost. The root-mean-square error (to be
abbreviated r-m-s error hereafter) of any plan of survey will by defini-
tion denote the hypotenuse of a right triangle, one leg of which is the
bias of the nonresponse that arises from the plan, and the other leg of
which is the standard error of the plan (see Fig. 1). Different plans
will have different triangles. By definition, the criterion for the opti-
mum plan is that it shall give a shorter hypotenuse than any other plan
will give for the same cost; or, alternately, a plan is optimum if it,
among all possible plans, will deliver a prescribed length of hypotenuse
at the lowest cost. One plan is “better” than another if it will yield a

The standard error
of response

The blas of nobresponse

Ficure 1. Any plan of survey will possess a bias of nonresponse and a standard

error of response. The right angle addition of the two forms the root-mean-square
error of the particular plan.

shorter hypotenuse than the other, for the same cost. There are a
number of nonsampling errors in all surveys, whether complete or
sample.® The bias of nonresponse is only one of them. It exists, of course,
in complete counts as well as in samples. In fact, the conclusions to
be reached at the end will point to some drastic re-orientation of the
effort expended on complete counts. Both the bias of nonresponse and
the error of sampling exist in sample surveys. These are the two errors
that within any particular framework of design of sampling, inter-

viewing, and questioning, are direct functions of the size of the sample
and of the number of recalls,

* A list of such errors with discussion is contained in Chapter 2 of Deming's Some Theory of Sampling
(John Wiley, 1950); and in an artiele entitled “On errors in surveys,” American Sociological Review, ix
(1944) 350-60.
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As one seldom knows the resultant magnitude of all the non-
sampling errors, and as they vary from one survey to another, the most
sensible magnitude to aim at for the r-m-s error of the combination of
sampling and of nonresponse (the hypotenuse in Fig. 1) will vary like-
wise. One might aim at a r-m-s error of 7% in one survey, at 10% in
another, and at 20% in another. Even with unlimited expenditure to
reduce the r-m-s error to very low proportions, other errors will still
be present unless funds are diverted to reduce them also.

QUANTIFICATION OF THE PROBLEM

The probability mechanism or model will now be described. The
population to be sampled will be divided into six classes, according to
the average proportion of interviews that will be completed success-
fully out of 8 attempts. The classes will be designated by 0, 1, 2, 4,
6, 8 to denote 0, 1, 2, 4, 6, 8 interviews completed, on the average, out
of 8 attempts. These figures will often appear as subscripts to various
other symbols. Six classes will be sufficient : more classes would not alter
the results enough to warrant the extra labor.

We assume that under the conditions specified for any particular
survey, failure to obtain an interview may arise from a multitude of
causes, which are manifest as not at home and refusal. We assume that
people that refuse are of two kinds, those that give permanent refusals
and those that give temporary refusals. People that give permanent
refusals will never respond to any kind of treatment (they are a part
of Class 0 defined more explicitly later). People that give temporary
refusals are the kind that will refuse sometimes but will grant inter-
views at other times or to other interviewers. An example of a tem-
porary refusal is a case where the wrong interviewer called, or the right
one called at the wrong time—woman bathing the baby, indisposed,
family at dinner, ete. An interview might have been obtained with
better luck in timing, or better luck in the selection of the interviewer.

Class 0 contains the stubborn core of permanent impregnable re-
fusals, plus the people who are never at home, gone to Florida, ete.,
or who are drunk when you do finally find them, or who turn out to
be incapacitated otherwise and can not possibly give meaningful an-
swers. At this moment we may note that the magnitude of this class
varies widely, dependent on the type of information called for by the
survey, and on the procedure of getting it. In a census, when people
are away, or refuse, or are incapable of giving information, a good
share of the required information can usually be obtained from neigh-
bors, and is, although information on income must usually in such
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cases be left unanswered. Thus Class 0 in a count of the number of
inhabitants only is doubtless well below 1%, being reduced by the
cooperation of neighbors. But in surveys whose express purpose is
income, expenditures, savings, medical history, the neighbors are un-
able to help, and Class 0 is bigger. I assume it to be 5% in the calcula-
tions to be presented here.

At the other extreme is Class 8, the people who 8 times out of 8 are
at home and answer the questions. Moving inward from the soft outer
shell (Class 8) toward the impregnable core, we encounter layers of
increasing density. In Classes 6, 4, 2, 1 are the temporary refusals plus
the people who are not home all the time. In Class 6 an interviewer will
be successful at finding the respondent at home and in getting an inter-
view, on the average, 6 times out of 8; in Class 4, 4 times out of 8; etc.

Thus, we have not merely responding units and nonresponding units.
Neither have we merely an overall proportion of response nor of non-
response, but rather, response and (except for Class 8) nonresponse
from each of several classes. We have not a mean value of some char-
acteristic for the responses and some other value for the nonresponses;
instead, each class possesses a mean and a variance, We are concerned
with the cumulative results from all classes.

THE PATIENT MEAN
We define the “patient mean” as

B ]
2o PG Y pia
1 1

a* = = (1)

E P To

X

wherein a; is the mean value per sampling unit of some particular
characteristic (rent, number of people employed, or something else)
in Class 7, and p; is the proportion in this class. The patient mean will
be the datum from which we reckon the biases in later caleulations,
and the unit in which we shall measure the bias and the root-mean-
square error of any plan. It is the result of calling back patiently ad
infinitum on all the people in Classes 1, 2, 4, 6, 8. The members of
Class 0 will also be included in the recall beeause in practice we have

no way of separating them out; but as they yield no response, they
contribute nothing to the patient mean.
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THE INITIAL SAMPLE (ATTEMPT I)

The treatment will be simplified by the assumption that the initial
sample is the mere drawing of » names from a list of N names (the
frame). A more complex plan will cause no important modification in
the conclusions with respect to the necessity for recalls, nor with
respect to the number of recalls required for the most economical plan.
It will not modify seriously the comparison with the Politz plan. It
will, however, change the absolute figures on cost, but these are not the
aim of this study; they are auxiliary only. By further assumption the
frame will be so large compared with the sample that the multinomial
term

nl

» DPo™oP1™Pa™ ¢+« - Pg™ (2)
nolngIng! « + - mgl

gives the probability that in the initial sample (Attempt I), there will

be n; names in Class ¢. n is the size of the initial sample. n; is a random

variable; p; and n are constants, satisfying the equations

8
2ni=mn (3)

§m=L @

If the sample (n) is as great as 10 per cent or more of the frame,
the variances and the biases to be computed should be reduced ap-
proximately by the factor 1 —n/N, in practice this reduction will be of
negligible importance.

When the returns from the initial call come in, we form from them
the numerical average for some particular characteristic and denote
it by z(I). According to the particular mechanism postulated, the com-
position of z(I) will be the fraction

Sum of all the numerical values in the responses of Attempt I

z(I)= . (5)

Number of responses in Attempt I

If we were able to separate the returns by class, this would appear as

@ = 2 Ra [Here and hereafter, sums will run over all classes (58)
e >R except 0, unless indicated otherwise]

wherein R; represents the number of responses from Class ¢, and z;
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represents the mean of the R; responses. Both R; and x; are random
variables. Their expected values are

Ex.- = @; (6)
ER; = nwipi (7)
where
i
AN 8
i (8)
The variance of z; will be
1 1 = Wi
Var z; = s (1 + --—-*lp—). 9)
nwip; nw;pPs

wherein ¢; is the standard deviation of the particular characteristic
in Class ¢. In what follows we shall drop terms in 1/n2; hence we shall
have no further use for the term (1—m:p;)/nm;p; in the last equation.

The quantity z(I) in Equation 5 is a random variable. Under the
assumed probability its expected value will be

G
ED = o (10)
and its variance will be
Var (0 = —— S ipifos + [ - ED]), (11)
where for convenience
G =Y ipia (12)
H =3 ip. (13)

The derivation of Equations 10 and 11 is simple in the light of
certain well-known principles of sampling. Let each sampling unit
possess 8 cells , each one NR or R (NR for no response, R for response)
according to the following distribution:

Class0, 8NR, OR
Class1, 7NR, 1R
Class2, 6 NR, 2R
Class4, 4NR, 4R
Class 6, 2NR, 6R
Class8, ONR, 8R
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Now when we draw a sample, we in effect draw first a sampling unit,
which will belong to one of the above classes. Next, we draw 1 of its
8 cells at random to determine whether we get a response. If we draw
an R-cell (a response), we write down the number z;;, which will be a
random variable, the same for all the R-cells of an individual, but vary-
ing from one individual to another. If we draw an NR-cell (no response),
we make no record at all. The probability of getting a response in the
double drawing (first, an individual sampling unit; second, a cell) is
wipi, which is only the expected proportion of all the responses that
will fall in Class 1.

The mean of the enfire set of responses in the frame will be

Q
i St as

2 *pi  H

and their variance will be’”

o 2 mpilo + (@ — pr)?] .
2 wips

The double drawing is a random procedure in which each cell has
the same probability as any other in the entire frame. The mean of
the returns of a sample will therefore give an unbiased estimate of
the mean of the entire set of responses; but this is only a restatement
of Equation 10. The expected number of responses in a sample of n is
n ZT.fp., wherefore the variance of a sample of n will be very closely
equal to ¢2/n > mpi; but this is only a restatement of Equation 11.
And thus Equations 10 and 11 are established.®

The bias in the expected result E(I) of Attempt I will be defined as

B(I) = E(I) — a% (16)

(15)

The mean square error of z(I) will then be
Mse (I) = Var (I) + B*(I). (17)

If Figure 1 were drawn for Attempt I, the two terms on the right of this
equation would be the squares of the two legs of the triangle, and the
left-hand member would be the square of the hypotenuse.

7 This is the formula for the variance of a composite universe; see, for example, the author’s Some
Theory of Sampling (John Wiley & Sons, 1950), pp. 58 and 59.

s My colleague Dr. Benjamin J. Tepping discovered this simple way of deriving Equations 10
and 11, He furnished also algebraie proofs, but they seem not to be required.
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ATTEMPTS II, III, IV

The nonresponses left over from the first attempt form a new frame.
The sampling plan may prescribe 0, 1, 2, or more recalls on a sample of
these nonresponses.

The 1st recall will be identified here as Attempt II. The 2d and 3d
recalls will be Attempts III and IV.

The determination of the optimum fraction (y) of the nonresponses
of Attempt I to draw for recall will be a subject for investigation in a
later paragraph.

The bias of nonresponse arises from Classes 1, 2, 4, 6. Each successive
attempt digs deeper into the lower classes, and diminishes the relative
proportions that remain in the upper classes. Class 8 is in fact wiped
out in Attempt I. In this way the combination of successive attempts
pushes the accumulated result closer and closer to the patient mean a*.

We assume that each attempt picks up a random sample of the non-
responses in each class. This is not what happens, but it is probably
impossible to put down an equation for what actually happens. The
interviewers use ingenuity. They find out from neighbors when the
people now absent will be at home. They make observations: they make
appointments. They hold conferences to decide which one of them
might best succeed in breaking down a refusal. Working for and working
against the interviewers is some softening and also some hardening
of the hearts of people who refused at an earlier call. I have seen them
both. The net result is probably that the recalls are less costly (as
Houseman says) than I assume in Table 3, and more successful than
this theory indicates. If so, then the recommendations for recalls are
even stronger than one may conclude from this theory alone.

Equations 10 and 11 apply also for the results of Attempts II,
III, 1V, if n is treated in any attempt as the number of interviews at-
tempted, and if p; in Equations 10-13 is replaced by:

(1=m) p/ 22 (1 — w)ps Attempt 1I
(A=m)? pi/ 22 (1 — m)*ps Attempt ITI
(1—m)® pi/ D (1 — i)’ D Attempt IV

Class 8 contributes nothing to these sums, being wiped out by the fac-
tor 1—m; which is 0 when 7=8.
EQUATIONS FOR THE COMBINATION OF ATTEMPTS

If the plan of survey calls for two recalls, we combine the results of
Attempts I, II, III. With an obvious extension of notation, the result
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of this combination will be
z(I + IT 4 III) = wz(I) + unz(II) + wue(III), (18)
where ur, un, wm are weights. If Ry, Ru, B are the responses in the
three separate attempts, then
Ry, Bir, Bin

R + Ru + B :
For the expected value of z(I+4+II4III) we may write with sufficient
approximation

E(I + II + III) = wiE(I) + wnE(II) + winE(III), (20)

wherein wr, Wi, Wi, are the expectations of uy, un, %m. Formally, with
sufficient approximation,

> ipy, 2 ipi(l — =), 2 ipi(l — w)? :

Uy, Uz, Urn =

(19)

3 3 = . 21
wr, Wi, Wi Ew;[l TR YT r.-)’] (21)
Before proceeding, we note that
ur + unr + U = 1}
" 22
wy + wir + wir =1 1)

The bias of z(I4+II+4III) of the combined results of Attempts I, II,
III will be defined as

B(I 4+ II + III) = E(I + II + III) — a*. ®3)

The variance of z(I+I1I+4III) may be computed as

Var (I + II + III) = w® Var (I) 4+ wn® Var (II)
+ win? Var (III). (24)
The notation in the above equations can easily be extended or con-
tracted to more or to fewer attempts. For a plan that uses only one re-
call, we simply drop the symbol III; also the term (1—)? in Equa-
tion 21. For a plan that uses three recalls, we annex a term in IV, and
replace (1—m:)? by (1—=)*+(1—m)%
THE POLITZ PLAN

The Politz plan includes questions to inquire of each person found
at home, and who does not refuse, to ascertain whether he was at home
last night at this time, the night before last, etc., to cover the 5 nights
preceding the interview, 6 nights in all. Each return is given a weight
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w, the reciprocal of the number of nights at home over the period of 6
successive nights. The result of applying the Politz plan will be the
random variable
SwR e,
SW‘R:

wherein S denotes the sum over the 6 Politz classes, and wherein R,
and z; denote the number of responses and their mean value in the
Politz class ¢. w,=6/(1+t), where t is the number of nights at home
during the preceding 5 nights. w;, R, and z, are, all random variables.

In each class except Class 8 it is possible for a person to be at home,
during the preceding 5 nights, some number of nights other than his
average (). Thus, E w, is not the reciprocal of =, but takes the values
shown in Equation 29. By applying the formula

z(P) = (25)

u Eu
E—=—(0+4C2— pC.C,) (26)
v Ev

it is possible to find the expected value of z(P) and to show that the
Politz correction for not being at home leads to the bias

B(P) = Exz(P) — a* [Definition |

=ap — a* — {(1 - —-) > (rpa)*(Bi — A2)(a; — ap)

52 nV?

The terms in the braces are very small numerically, and we accept
with sufficient approximation for our purpose,

OIS T m} . @)

B(P) = ap — a* (28)
wherein ;=1/8, as heretofore, and
6
desn iy & 3t [For Class 7]
L=t

J 5 [Assuming that ¢ is a

= ) — Y ( t)(l e e binomial variate |

E=0

"~ —Z( )(1 — )

i s=l

ey [1 ol ? ol ¢ 7 (29)



ERROR OF RESPONSE AND BIAS OF NONRESPONSE 755

6 2
B; = Ew = E(—)
11

2 e B
o

i s=ml 8 8

Ei(ﬁ = .)5.+_1_(6)1_ by 2
n{l 1) s v, Gl

bt (30)
6
ESw R,
= "ESwiR,
Z mipid s Z Pi [1 — (1 — =)t las
e T R o R e
V =) mpid. (32)

The bias of a plan that uses k—1 recalls may be written

2o pill — (1 — mo)t]a
2 mll = (=)}

to the same approximation that appears in Equation 28. With k=2,
for example, this form gives a numerical verification of the bias
B(I+4II+41III) calculated otherwise by Equations 20 and 23.

The variance of the Politz plan is®

ap

B(I—-K) = (33)

1
Var (P) = P > wpiBilo + (a: — ap)?]

1y 1
=+ (1 % ;)?7_’2 (rp)*(B: — A?)(a: — ap)’ (34)

It is worth noting that if we place 4;=B;=1, the second term vanishes,
and the right-hand member reduces precisely to Equation 15, as it
should.

» My equation for the Polits plan differs from the equations given by Polits and Bimmons.
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SEARCH FOR THE OPTIMUM PLAN

The accumulated mean square error of Attempts I, II, and III will
be

ML+ II + III) = Var (I + II + III) + B2(I + II + III). (35)

We drop the symbol III for a plan that calls for two attempts, and we
annex IV for a plan that calls for four attempts.

Any two plans may be expected to incur different costs and to yield
different mean square errors. As agreed at the beginning, a plan is
optimum if its cost is less than that of any other plan that will yield
the same mean square error. This is a matter of numerical calculation.

Numerical assignments to the various fundamental magnitudes (p;,
a;, o;) will oceur two sections ahead.

We have one other task—the determination of the optimum frac-
tion y, a subject for the next section.

DETERMINATION OF THE OPTIMUM FRACTION OF NONRESPONSES
TO INCLUDE IN THE RECALLS

Let y denote the fraction sought. We remind the reader that At-
tempt III will be a canvass of all the nonresponses that remain from
Attempt II, and that Attempt IV will be a canvass of all the non-
responses that remain from Attempt III. There is thus only the one
fraction y to determine.

The mean square error (M) of the accumulated result of any num-
ber of attempts may be written in terms of n and y as

M = A + B/n + C/ny, (36)
the cost of which is
Y = Dn + Eny, 37)

A, B, C, D, E are constants. As before, n is the initial sample for At-
tempt I. By differentiation it can be shown that, for a fixed value of Y,
the minimum in M occurs when

cD
s

Y BE (38)

This result is independent of n, hence it holds for any initial size of
sample.

The equation for * just given contains D and E only in the ratio

D:E, which shows that y does not depend directly on the absolute

magnitudes to be assumed for the costs in Attempt I and later, but
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rather on the ratio of these costs. And as y will be proportional to
+/D+E, y is relatively insensitive to the ratio assumed for D:E. More-
over, y is not dependent on the absolute magnitudes of the a, but on
their ratio to any one of them, or to a*, because B and C occur only in
the ratio B:C.

Table 4 shows the optimum values of y obtained from Equation 38;
also the values selected for actual use in the calculations. The fraction
y obviously varies slowly with the number of recalls. To simplify the
required calculations I have set y=3/5 for all plans with the first set
of a;; and y=1/4 for all plans with the second set of a:.

It may be of interest to note that the removal of the bias of non-
response by recalls is independent of the fraction y. It is not necessary
to recall on the optimum fraction, nor on any other particular frac-
tion, so far as the bias of nonresponse is concerned. However, as y de-
creases, the cost goes down but the variance and the r-m-s error in-
crease, so it is wise not to make y too small. The optimum fraction, if
it can be predicted on experience, or some approximation thereto, will
guide one close to the minimum r-m-s error for any permissible cost of
interviewing.

NUMERICAL MAGNITUDES ASSUMED

In order to make numerical calculations and to derive conclusions
therefrom with respect to the most economical design of surveys, it is
necessary to assume some numerical magnitudes for the p;, oy; also for
the costs. Unfortunately, no set of numerical magnitudes can be typi-
cal of all conditions met in the field. I may interject the reminder that
every question on a questionnaire has not only its own particular val-
ues of a; and of o:, but of p; as well, even within the same survey, be-
cause some questions receive better cooperation than others. The best
that one can do is to make numerical assumptions that fit some of the
conditions met in practice, and to infer from the equations the range
of validity of the conclusions.

The basic numerical assumptions are in Table 1. The expected num-
ber of interviews, of responses, and of nonresponses, are shown in Ta-
ble 2. The response rates (the p:) assumed here are intended to assimi-
late average urban experience on a question of moderate difficulty; and
without making them responsible for the final choice, I wish to thank
Messrs. Lester R. Frankel and Robert Weller of the Alfred Politz Re-
search organization for their help and interest in choosing these par-
ticular values.

Fortunately, there is a great deal more generality in the two sets of
a; than may be apparent at first sight, for one may transform either one
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TABLE 1
NUMERICAL VALUES ASSUMED
Class
Property and

eymbol VS e R SHORY . Sy 1-8
Proportion p; .05 .10 .10 .20 .25 .30 .95
Mean value
of the a; (1st) | xxx | 2,00 1.75 1.50 1.25 1.00 || a*=1.355 263
measured
character- |a; (2d) | xxx .10 .20 .40 .60 1.00 || a*=0.589 474
istic )
Standard deviation
a; XXX Same as a; in both sets of a;

TABLE 2

THE EXPECTED SIZES OF SAMPLE IN THE VARIOUS AT-
TEMPTS, BASED ON AN INITIAL SAMPLE OF n IN
ATTEMPT I. HERE THE SUMS RUN OVER
ALL CLASSES, 0 TO 8

Attempt Interviews Responses Nonresponses
I n ny_mip; ny (1 —=)ps
11 an=ny 2_(1—=)p; ny 2 (1 —wg)wips ny 2 (1—m)2p;
I nr=ny 2 (1—=)%p; | ny > (1—=)*mps ny 2 (1—m)ips
v nry =ny 2 (1 —x)%*p; ny Z(l —mi)dmipi ny 2 (1 —m)ip:
e nv=ny 2 (1—m)'p; | ny ) (1—w)mp; ny 2 (1—=)5p
VI nvi=ny 2 (1—m)%pi | ny X (1—w)bmpi | ny 2 (1—m)%p;
VII nv=ny 2 (1—x)'p: | ny)X (1—=)mp: | ny 2 (1—7)7p

Numerical values based o

n an initial sample of n =1000

I
I11
v

VII

n=1000
nn=375.0y
nim =248 .4y
niv=188.1y
ny=153.Ty
nyr =131.5y

nyn=115.9y

625.0

126.6y
60.3y
34.4y
22.2y
15.6y

11.7y

375.0

248.4y
188.1y
153.7y
131.5y
115.9y
104.2y
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of these sets into almost any other that he may encounter. For ex-
ample, to discuss a yes-and-no survey in which the proportions of yes
vary from 609, in Class 1 to 40% in Class 8, one has only to derive a
new value a;’ from an old a; by setting

G." =20 + 20!‘1.‘ (39)

where a; on the right belongs to the 1st set of a; in Table 1. Both a;
and a;’—20 have a 2-fold variation from Class 1 to Class 8. The new
patient mean is

a’™ = 20 + 20a* (40)

where a*=1.355 263, the patient mean of the 1st set of a;, as given in
Table 1. The relative bias computed for a;’—20, for any number of at-
tempts, will be precisely the same as the relative bias computed for a;
(Table 5). It follows that the new expected value for any number of
attempts will be

E' = 20a* Rel B + a'*
= 47.105 4 27.105 Rel B (41)

where Rel B is the relative bias shown in Table 5 for the corresponding
number of attempts. An example will occur later (Table 9).

The 2d set of a; could serve the same purpose by a suitable transfor-
mation, but we shall not carry it through.

Thus, in spite of the limitations of any particular set of numerical
assumptions, the conclusions to be drawn will warrant some sweeping
generalizations.

COSTS

For the costs of making calls (interviewing only) we assume for cal-
culation the following figures:

For Attempt I, $3 per call
For later attempts, $5 per call
For the Politz plan, $4 per name

This amount will cover the cost of weighting
and of calling back on the temporary refusals.

Table 3 shows the costs of interviewing derived from the values as-
sumed for the p; in Table 1, and with the cost per call as mentioned
earlier. n is the size of the initial sample, and y is the fraction of the non-
responses left over from Attempt I that constitute the sample for At-
tempt II;
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TABLE 3
COSTS OF INTERVIEWING

Plan No. of recalls Cost (dollars)
Attempt I 0 Y =3n
Attempts I 4+11 .3750ny 3n+1.8750ny
Attempts I —T1I .6234ny 3n+3.1172ny
Attempts I —IV .8115ny 3n+4.0576ny
Attempts I -V .9653ny 3n+4.8263ny
Attempts I—VI 1.0968ny 3n+5.4839ny
Attempts I —VII 1.2126ny 3n+6.0632ny
Politz (equivalent to 5 recalls) 4n

The actual numerical magnitudes of these costs are not so important
as their relative magnitudes. If all the costs were doubled, the cost
computed for any plan will be doubled, but the relative costs and the
relative merits of the various plans would remain unchanged.

TABLE 4

RESULTS FOR THE OPTIMUM y, AND THE VALUES
SELECTED FOR THE CALCULATIONS THAT LED
TO TABLES 5 AND 6, AND TO FIGS. 2 AND 3

18t set of a; 2d set of as
Plan y calculated y selected y calculated y selected
from for from for

Equation 38 | caleulation | Equation 38 calculation

I-1I .69 3:5 .33 1:4
I-III .67 3:5 .30 1:4
I1-1V .65 3:5 .28 1:4
I-V .63 3:5 .26 1:4
I1-VI .61 3:5 .24 1:4
I1-VII .60 3:5 .23 1:4

It should be noted that these costs are for the interviewing only.
Considerations of overhead costs, training, and office-work for the
different plans must be taken into account before one decides definitely
whether one plan is more economical than another.

CONCLUSIONS FROM THE CALCULATIONS

The numerical results of the calculations are in Tables 5, 6, 7, 8 and
in Figs. 2 and 3. The biases and r-m-s errors are expressed in units of
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TABLE 5

NUMERICAL VALUES OF THE BIASES AND R-M-S ERRORS FOR
VARIOUS SIZES OF INITIAL SAMPLE (n); 1st SET OF ay,
Y =.6. COSTS AT n=1000

Plan I I+II I-III I-IV I-¥ I-VI I-vVil

Rel bias —.110874 [—.075752 | —.057302 | —.045330 | —.036800 |—.030383 | —.025380
n =100

Rel m-s-¢ 025974 .019918 .017628 016530 .015938 015504 015389

Rel r-m-s-e .161164 .141131 132773 128560 126246 .124876 .124052
n=200

Rel m-s-e .019133 .012828 010456 .008203 008646 008259 008016

Rel r-m-s-e .138322 .113261 .102255 096402 002084 090879 .089532
n =300

Rel m-s-e .016853 010464 008085 006880 006215 005813 . 005559

Rel r-m-s-e .120822 102204 . 089805 082046 078834 078243 074559
n =500

Rel m-s-e .015029 008574 .006153 004950 004271 003857 .003593

Rel r-m-s-e .122593 002506 078441 0703568 085353 062105 059942
7 =1000

Rel m-s-e .013661 .007156 .004718 .003503 | .002812 | .002390 .002118

Rel r-m-e-e .116880 084593 .068688 .059186 .053028 .048888 046022
n=2000

Rel m-s-8 012077 006447 004001 002779 .002083 001657 .001381

Rel r-m-s-e 113920 080203 .063253 .052716 045640 040706 .037182
n=3000

Rel m-s-e 012749 006211 .003762 002537 .001840 001412 .001135

Rel r-m-s-e .112811 .078810 .061335 .050369 .042805 087577 .033690
n=5000

Rel m-s-e .012567 | .006022 003571 .002345 | .001648 .001216 | .000939

Rel r-m-s-e .112103 077602 069758 048425 040571 .084871 .030643
Costs st

n=1000 $3000 4125 4870 5435 5896 6290 6638

a*. The base for the bias is the O-point of the scale for the a;. The esti-
mation is assumed to be a summation of the initial call and the recalls.
The aim is assumed to be the estimation of an average or of a total.

A. Conclusions from the 1st set of ai, a £-fold variation from a, to as:
Table & and Fig. 2. Conclusions 1, 2, 8, 4, and 6b are independent of the
type and size of sample.

1. With no recalls at all (Attempt I only), the minimum relative
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r-m-8 error attainable is 119,. No sample however big, not even a com-
plete count, can penetrate below this minimum, without recalls.
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Froure 2. The relative bias, the relativer-m-s error, and thecost, plotted against
the initial sample-size (n) for various plans, for the 1st set of a;, in which a1=2 a,.
The curves show the futility of attempting to achieve accuracy by sheer size of
sample. Recalls are much more effective. The dashed lines show the size of
sample required, and the cost, to yield a relative r-m-s error of 7 %. The relative
biases and the relative r-m-s errors are in units of a*.

2. With one recall (Attempts I+II), the minimum r-m-s error drops
to 7.6%. No sample however big can penetrate below this minimum
with only one recall.
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3. With 2 recalls (Attempts I+II4III), the minimum r-m-s error
drops to 5.7%. No sample however big can penetrate below this mini-
mum with only two recalls.

4. With 3 recalls (Attempts I-IV), the minimum r-m-s error drops
to 4.5%. With 4, 5, and 6 recalls, the minimum r-m-s error drops t03.7,
3.0, and 2.5%,.

5. To attain a prescribed r-m-s error of (e.g.) 7§%:

(a) We may use 3, 4, 5, or 6 recalls with initial samples as shown in the ac-
companying table.

Frou F1a. 2
No. of recalls Initial sample Cost
6 345 $2,290
5 378 2,390
4 408 2,450
3 512 2,800

(b) With 0, 1, or 2 recalls we can not attain the prescribed r-m-s error (73 %)
with any sample however big.

B. Conclusions from the 2d set of a:, a 10-fold variation from a, to as:
Table 6 and Fig. 8. Conclusions 6, 7, 8, 9, and 10b are independent of the
type and size of sample.

6. With no reealls at all (Attempt I only), the minimum r-m-s error
attainable is 24.5%. No sample however big, not even a complete
count, can penetrate below this minimum without recalls.

7. With one recall (Attempt I+1I), the minimum r-m-s error drops
to 15.5%. No sample however big can penetrate below this minimum
with only one recall.

8. With 2 recalls (Attempt I+4II+4III), the minimum r-m-s error
drops to 11.3%. No sample however big can penetrate below this mini-
mum with only two recalls.

9. With 3 recalls (Attempts I-IV), the minimum r-m-s error drops
to 8.79. With 4, 5, and 6 recalls, the minimum r-m-s error drops to
6.9, 5.6, and 4.7%,.

10. To attain a prescribed r-m-s error of (e.g.) 10%:

(a) We may use 3, 4, 5, or 6 recalls with initial samples as shown in the ac-
companying table.
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Frowm F1a. 3
No. of recalls Initial sample Cost
6 210 $ 875
5 245 1,010
4 325 1,380
3 730 2,010

(b) With O, 1, or 2 recalls we can not achieve the prescribed r-m-s error (10%)
with any sample however big.

TABLE 6

NUMERICAL VALUES OF THE BIASES AND R-M-S ERRORS FOR
VARIOUS SIZES OF INITIAL SAMPLE (n); 2d SET OF @y,
¥ =.25. COSTS AT 7 =1000

Plan I I+I1 I-II1 I-IV I-v I-V1 I-vIo

Rel biss .245190 .155062 .112665 .086955 069408 056593 046815
n=100

Rel m-s-e 001985 .046455 082012 .025385 021763 .019563 .018135

Rel r-m-s-e .303260 .215534 .178019 .150827 147528 .139888 . 134666
n =200

Rel m-e-e 076052 085250 022353 018473 .013200 .011383 .010164

Rel r-m-s-e 275775 187750 140509 128347 .115282 106691 .100817
n =300

Rel m-s-e 070741 .031515 .019133 .013502 010466 008656 007507

Rel r-m-s-e .265072 AT7525 .138322 .116198 .102303 .093038 086643
n =500

Rel m-g-e .066492 028527 016558 .011125 008207 006475 .005381

Rel r-m-s-e 257860 . 168809 .128678 . 105475 090502 080467 073355
n=1000

Rel m-s-e .063306 .026286 014626 .009343 006512 004839 003787

Rel r-m-s-e .251607 .162130 .120038 096659 080697 069563 061539
n=2000

Rel m-s-e 061712 025166 013660 008451 005685 004021 002990

Rel r-m-s-e .248419 .158038 .116876 .001929 075266 063411 054681
n=3000

Rel m-s-e 061181 024702 .013338 008154 .005383 003748 002724

Rel r-m-s-e .247348 157455 .115480 090200 073369 081221 .052192
n = 5000

Rel m-s-e .060756 024493 .013080 007917 005157 003530 002512

Rel r-m-s-e . 246487 .156502 .114368 .088078 .071812 .060414 .050120
Coata at

n =1000 $3000 3460 3T 4014 4207 4371 4516
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Figure 3. The relative bias, the relative r-m-s error, and the cost, plotted
against the initial sample-size (n) for various plans, for the 2d set of ay, in which
a=.1 as. The curves show the futility of attempting to achieve accuracy by
sheer size of sample. Recalls are much more effective. The dashed lines show the
gize of sample required, and the cost, to yield a relative r-m-s error of 109%,.
The relative biases and the relative r-m-s errors are in units of a*.

C. General conclusions

11. Even with three recalls, with the level of response assumed in the
calculations (taken from average urban experience), a sample bigger
than the binomial equivalent of from 300 to 500 for an estimate of any
one class is ineffective and uneconomical. A plan that would reap any
real benefit from bigger samples must support 4 or 5 or more recalls.
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12. An attempted “complete count” is no exception, and often rep-
resents an extreme waste of effort.

13. With the proportions of nonresponse assumed here, high ac-
curacy can be attained only with 4, 5, or 6 recalls, along with an initial
sample equivalent to from 800 to 1500 binomial cases. Careful con-
sideration should therefore be given in the planning to decide whether
the need for extreme accuracy warrants the required expense and delay
occasioned by recalls beyond the 3d, and for an initial sample bigger
than the binomial equivalent of n=2300 in any subclass of the universe
for which an estimate is desired.

14. Table 8 shows that where extremely high accuracy is required,
the Politz plan with 2000 or more binomial cases becomes competitive
in cost with a survey that depends on recalls. In any case, the Politz
plan has the advantage of speed, and of being able to produce results
under circumstances wherein recalls are impossible.

15. Because one kind of experience may be translated into another
by transformations similar to Equation 39, the generality of the above
conclusions and their impact on the design and interpretation of sur-
veys and of complete counts are inescapable. A limiting case of excep-
tion occurs, of course, when the range of variation of the a; is small
compared with a*,

16. The above conclusions with respect to the number of recalls re-
quired are generally applicable to all types of sample-design for draw-
ing the sampling units. A change in sample-design (as from the bi-
nomial sampling of individuals to samples of areas) only changes (usu-
ally widens) the distance from the bias to the r-m-s error in Figs. 2 and
3, without raising or lowering the bias. The most economical number (n)
of interviews in an area sample, for any given number of recalls, will
for most characteristics be bigger than the figures mentioned in con-
clusions 11, 13, and 14. The increase may range from 0 on up to some-
times double, depending on the characteristic and the clustering effect
of the interviewers’ workloads.

IMPACT ON DESIGN

The most impressive feature of the results is the heavy bias of non-
response, when no provision is made to reduce it, even though there
be but a 2-fold variation from a; to as.

The second most impressive feature is the fact that if nonresponse
reaches anywhere near the proportions (p;) assumed, then when the 0
of the scale of the a; is not large, we can not afford, except for special
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justification, to plan for extreme accuracy: it is simply too expensive.

This conclusion is also borne out by Table 7, which shows that more
information per dollar comes from a sample of 500 than for a sample
of 1000; and that every successive recall shows a gain in the amount of
information obtained per dollar, particularly for the smaller sample
size. An optimum is not reached even with six recalls. In other words,
as we concluded earlier from Figs. 2 and 3 and from Tables 5 and 6, we
get more for our money by taking a moderate initial sample and dig-
ging deep into it with many recalls. However, many recalls delay the
day on which the tabulations will be ready, and one may be forced to

TABLE 7

THE AMOUNT OF INFORMATION PER UNIT COST FOR THE SEVEN

PLANS (FROM 0 TO 6 RECALLS), FOR INITIAL SAMPLES OF 500 AND

1000. INFORMATION IS DEFINED AS THE RECIPROCAL OF THE
REL M-S8-EIN TABLES5AND 6. THE COST COMES FROM TABLE 3

1st set of a; 2d set of a;

Plan

n=>500 n=1000 n =500 n=1000
I .044 358 .024 400 .005 013 .005 265
1411 .056 562 .033 877 .020 216 .010 966
I-II1 .066 T44 .043 522 .031 954 .018 092
I-1V .074 326 .052 524 .044 787 .026 664
I-V .079 422 .060 315 .057 912 .036 501
I-VI .082 438 .066 519 .070 649 .047 278
I-VII .083 856 071 127 .082 302 .058 472

call 3 halt at 3 or 4 recalls. Where speed is urgent, or where recalls are
otherwise inadvisable, one may bear in mind the Politz plan, which of-
fers a rapid solution with recalls only on the temporary refusals.
With the usual method of estimation (pooling the initial call and the
recalls) the best way to attain accuracy is to build up the initial re-
sponse (i.e., to increase ps). One or two recalls would then be much
more effective than they are under the conditions assumed; and bigger
samples would also be more effective. Observations on the proper time
of day to find certain kinds of people at home in a particular area, and
willing to answer questions, plus a skillful introduction and approach
50 as to cut down refusals, are known to be helpful in this direction.
An attempted complete count is no exception to the conclusions
reached. Without a highly successful initial response, followed by some
effective number of recalls, 95% of the energy put into a complete
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count, taken to obtain an estimate for a large area, may be wasted.
Size does not atone for nonresponse: this is all too evident from the
calculations (Tables 5 and 6; Figs. 2 and 3).

The mechanism adopted here is a device by which experience can
be accumulated and pointed toward the attainment of (a) greater ac-
curacy per unit cost, and (b) less waste, through conservation of un-
productive effort expended on samples that are too big. Good guesses
for the constants pi, ai, o; can almost always be made on the basis of
past experience; and the calculations made with them will indicate a
plan not far from optimum. Continued experience will provide im-
proved numerical values for the constants, and continually improved
design and interpretation of the results. Without a probability design
of some sort, it is difficult to capitalize on experience.

Although the discourse here has been entirely in terms of interviews,
the results are equally applicable to surveys in which the initial at-
tempt is made by mail, or in which all attempts are made by mail.
Appropriate changes must of course be made in the numerical values of
the constants. Thus, if the mail were used for Attempt I, andiflinter-
views were used for the recalls, then the cost D in Equation 38 would
be much less than it is when interviews are used in Attempt I, and y
will then be smaller. For example, if the cost of a mailed questionnaire
were $.75, and if the cost of an interview on a nonresponse were $5,
then y would reduce to perhaps as low a figure as 1 in 6, depending of
course on the other constants in the equation.

One may well wonder what the biases are in surveys that depend
only on a mailed survey with a 15% total response, or even 309, or
509, without calls on the nonresponses. The mechanism adopted here
shows that it is a mystery how such results can be worth anything at
all.

IMPACT ON METHODS OF ESTIMATION

After the returns from the survey are in, there remains the problem
of estimating the mean per sampling unit, and the standard error of
this estimate. As the survey does not touch Class 0, it can by itself
only produce estimates for Classes 1-6.

The usual practice of combining the various attempts (after weight-
ing Attempt IT and higher attempts by the factor 1/y) may be both
misleading and inefficient. A glance at Table 5 or at Figure 2 shows that
419, of the bias still remains after the 3d recall, and that 279, still
remains after the 5th. Table 6 and Figure 3 are equally discouraging.
The decreasingly slow ascent toward the vertex of 0 bias may explain
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how easy it is to conclude, incorrectly, that after 3 recalls there is little
more bias to squeeze out, and that additional recalls are not worth their
cost.

To illustrate the usual procedure, let us make some calculations on
a yes and no survey.!® The proportions of yes in the various classes will
range, let us suppose, from 609, in Class 1 down to 409, in Class 8,
following the relative values of 20(a;+1) derived from the 1st set of a:
in Table 1. Table 9, calculated with the aid of Equation 41, shows the
expected results of combining 2 attempts, 3 attempts, ete. The result
that we really need is the patient mean, shown at the bottom of the ta-
ble as the expected result of continuing the recalls indefinitely. The
slow progress of the combined result is obvious; also the need of some-
thing better.

TABLE 9

THE EXPECTED PROPORTIONS OF YES, FOR SEVERAL PLANS,
COMPUTED BY EQUATION 41. THE PROPORTIONS OF YES
RANGE FROM 60% IN CLASS 1 TO 40% IN CLASS 8

e Expected proportion Bias

o No remaining

Attempt I 44.10 55.90 100.0%
I+11 45.05 54.95 68.4
14114111 45.55 54.45 51.8
I-1V 45.88 54.12 40.9
I- VvV 46.11 53.89 33.2
=1 46.28 53.72 27.6
I-vII 46.42 53.58 22.8

Infinity a'*=47.11 52.89 0

What we need is a way to extract more information from the recalls.
A more efficient estimate may be contained in a scheme for extrapolat-
ing the results of the various attempts, as proposed by Hendricks."
The mechanism proposed here will provide a rational scale for the
extrapolation. It may be that the scale proposed by Hendricks is ap-

1: I am indebted to Dr, Leo P. Crespi and to Mr. Fred W. Trembour of the Reactions Analysis
Staff in the Office of the High Commissioner for Germany, who in several conversations with the author
brought up questions and suggestions that led to this illustration.

" Walter A. Hendricks, Chapter 5 in the book Agricultural Estimating and Reporting Service (Miscel-
mm;ﬁuhumﬁm No. 708, Bureau of Agricultural Economics, Washington, 1049); pages 31-35 in
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propriate, or it may be that some other scale will give more accurate
results with convenience.

For an estimate of a* by extrapolation, we may look upon recalls as
necessary to provide the required coordinates of points by which to
make the extrapolation, and not merely to provide additional returns
to add to the initial attempt.

For this new type of estimate, the standard error would not be cal-
culated in the usual way (Equation 24), but as the standard error
of the intercept on the scale along which we read, by extrapolation, the
estimate of a*. New theory will be required for the optimum allocation
of effort amongst the various recalls, and for effecting the extrapola-
tion; also for calculating its standard error. It may turn out, for ex-
ample, that unless one can achieve extremely high initial response,
approaching 909, there may be little point in expending funds to build
it up. It is possible that theory beyond the scope of this paper may lead
to efficiency and reliability far beyond those attained in practice today.

SOME REMARKS ON CLAss 0

We must face the fact that our survey can at best only provide esti-
mates for Classes 1-6, although it can also give us the proportion po
and some of the characteristics of Class 0. The administrative decisions
that the survey was expected to help may nevertheless involve Class 0
along with the others. In a marketing study, for example, the people in
this class may be heavy purchasers of the very commodity that forms
the subject of the survey. They may in part be people who travel much,
and who may thus be important to a railway, an air line, a manufac-
turer of automobiles, a hotel, and to others. They may be people in
high income groups. It may therefore be important to learn how much
we are missing by not bringing them into the survey.

Unfortunately, it is impossible to learn this magnitude from the sur-
vey itself. The only possible approach seems to be from outside sources,
such as through statistics on the total movement of a particular product
from wholesale into retail stores. It is possible in many cases to gather
outside evidence by which to evaluate approximately the magnitude
of @ (the mean in Class 0), or rather of the total agpe in Class 0, for
some of the important characteristics that affect the decisions or relate
to them. The next step is to ascribe upper and lower bounds to the pos-
sible magnitude of agpe, and thus to infer the possible effects of Class 0
on the uses and limitations of the data."

12 This suggestion came from Professor Philip M Hauser in an informal conversation in regard to
this research.
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The difficulty with Class 0 is not peculiarly a sampling problem, as
Class 0 appears in complete counts as well as in samples—in fact, it is
undoubtedly bigger in complete counts than in samples.
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